Marking Scheme Strictly Confidential (For Internal and Restricted use only) Senior School Certificate Examination, 2023 SUBJECT: PHYSICS (042) (PAPER CODE 55/1/1)

Gene	eral Instructions : -
1	You are aware that evaluation is the most important process in the actual and correct assessment of the candidates. A small mistake in evaluation may lead to serious problems which may affect the future of the candidates, education system and teaching profession. To avoid mistakes, it is requested that before starting evaluation, you must read and understand the spot evaluation guidelines carefully.
2	"Evaluation policy is a confidential policy as it is related to the confidentiality of the examinations conducted, Evaluation done and several other aspects. Its' leakage to public in any manner could lead to derailment of the examination system and affect the life and future of millions of candidates. Sharing this policy/document to anyone, publishing in any magazine and printing in News Paper/Website etc may invite action under various rules of the Board and IPC."
3	Evaluation is to be done as per instructions provided in the Marking Scheme. It should not be done according to one's own interpretation or any other consideration. Marking Scheme should be strictly adhered to and religiously followed. However, while evaluating, answers which are based on latest information or knowledge and/or are innovative, they may be assessed for their correctness otherwise and due marks be awarded to them. In class-X, while evaluating two competency- based questions, please try to understand given answer and even if reply is not from marking scheme but correct competency is enumerated by the candidate, due marks should be awarded.
4	The Marking scheme carries only suggested value points for the answers These are in the nature of Guidelines only and do not constitute the complete answer. The students can have their own expression and if the expression is correct, the due marks should be awarded accordingly.
5	The Head-Examiner must go through the first five answer books evaluated by each evaluator on the first day, to ensure that evaluation has been carried out as per the instructions given in the Marking Scheme. If there is any variation, the same should be zero after delibration and discussion. The remaining answer books meant for evaluation shall be given only after ensuring that there is no significant variation in the marking of individual evaluators.
6	Evaluators will mark($$) wherever answer is correct. For wrong answer CROSS 'X" be marked. Evaluators will not put right (\checkmark) while evaluating which gives an impression that answer is correct and no marks are awarded. This is most common mistake which evaluators are committing.
7	If a question has parts, please award marks on the right-hand side for each part. Marks awarded for different parts of the question should then be totaled up and written in the left-hand margin and encircled. This may be followed strictly.
8	If a question does not have any parts, marks must be awarded in the left-hand margin and encircled. This may also be followed strictly.

9	If a student has attempted an extra question, answer of the question deserving more marks should be retained and the other answer scored out with a note "Extra Question" .
10	No marks to be deducted for the cumulative effect of an error. It should be penalized only once.
11	A full scale of marks 0 - 70(example 0 to 80/70/60/50/40/30 marks as given in Question Paper) has to be used. Please do not hesitate to award full marks if the answer deserves it.
12	Every examiner has to necessarily do evaluation work for full working hours i.e., 8 hours every day and evaluate 20 answer books per day in main subjects and 25 answer books per day in other subjects (Details are given in Spot Guidelines). This is in view of the reduced syllabus and number of questions in question paper.
13	Ensure that you do not make the following common types of errors committed by the Examiner in the past:-
14	 Leaving answer or part thereof unassessed in an answer book. Giving more marks for an answer than assigned to it. Wrong totaling of marks awarded on an answer. Wrong transfer of marks from the inside pages of the answer book to the title page. Wrong question wise totaling on the title page. Wrong totaling of marks of the two columns on the title page. Wrong grand total. Marks in words and figures not tallying/not same. Wrong transfer of marks from the answer book to online award list. Answers marked as correct, but marks not awarded. (Ensure that the right tick mark is correctly and clearly indicated. It should merely be a line. Same is with the X for incorrect answer.) Half or a part of answer marked correct and the rest as wrong, but no marks awarded. While evaluating the answer books if the answer is found to be totally incorrect, it should be marked as cross (X) and awarded zero (0)Marks.
15	Any un assessed portion, non-carrying over of marks to the title page, or totaling error detected by the candidate shall damage the prestige of all the personnel engaged in the evaluation work as also of the Board. Hence, in order to uphold the prestige of all concerned, it is again reiterated that the instructions be followed meticulously and judiciously.
16	The Examiners should acquaint themselves with the guidelines given in the "Guidelines for spot Evaluation " before starting the actual evaluation.
17	Every Examiner shall also ensure that all the answers are evaluated, marks carried over to the title page, correctly totaled and written in figures and words.
18	The candidates are entitled to obtain photocopy of the Answer Book on request on payment of the prescribed processing fee. All Examiners/Additional Head Examiners/Head Examiners are once again reminded that they must ensure that evaluation is carried out strictly as per value points for each answer as given in the Marking Scheme.

	MARKING SCHEME: PHYSICS(042)		
	Code: 55/1/1		
Q.No.	VALUE POINTS/EXPECTED ANSWERS	Marks	Total Marks
	SECTION –A		
1.	(b) $\frac{\overrightarrow{F}}{8}$	1	1
2.	(d)	1	1
	Resistance T Temp.		
3.	(d) 1 Ω	1	1
4.	$v_d \uparrow f_A$	1	1
5.	(a) Repelled by both the poles.	1	1
6.	(c) 0.19 V	1	1
7.	(c) Resistance (r)	1	1
8.	(c) $\in_o \frac{d\phi_E}{dt}$	1	1
9.	(a) Zero	1	1
10.	(c) n^2	1	1
11.	(d) 95 nm	1	1
12.	(d) Independent of A	1	1
13.	(c)	1	1
	v <u>i</u>		
14.	(b) it becomes a p-type semiconductor	1	1
15.	(d) 0.01 eV	1	1
16.	(d) Assertion (A) is false and Reason (R) is also false.	1	1
17.	(a) Both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of Assertion (A).	1	1
18.	(b) Both Assertion (A) and Reason (R) are true but reason (R) is the not correct explanation of the Assertion (A)	1	1
	SECTION-B		

19.			
	Calculation of acceleration of alpha particle 2		
	$\vec{F}=q(\vec{v}\times\vec{B})$	1/2	
	$= q(3 \times 10^{5} i \times (0.4i + 0.3j))N$ $\vec{F} = q(0.9 \times 10^{5} \hat{k})N$	1⁄2	
	$\vec{F} = \mathbf{m}\vec{a} = q(0.9 \times 10^5 \widehat{k})N$		
	$\vec{a} = \frac{q}{m} (0.9 \times 10^5 \hat{k}) m s^{-2}$	1/2	
	= $4.8 \times 10^7 \times 0.9 \times 10^5 \hat{k} \text{ ms}^{-2}$ = $4.32 \times 10^{12} \hat{k} \text{ ms}^{-2}$ Note: Deduct ¹ / ₂ mark if a student does not mention the direction of	1⁄2	2
20	acceleration.		
20.	Identification1Justification1		
	Induced electric field due to changing magnetic field is easily observed. Induced electric field due to changing magnetic field can be easily produced by various ways like rotating/moving a coil in magnetic field, changing the	1	
01	shape of coil in magnetic field, bringing bar magnet near a coil etc.	1	2
21.	(a) Ray diagram 1 Proof of Snell's law of refraction 1		
	Incident wavefront A' v_1 i P Medium 1 i $v_2 < v_1$ E $Refracted wavefront$	1	
	AB is incident wave front, incident at an angle i. Let τ be time taken by the wave front to travel distance BC. BC= $v_1 \tau$ where v_1 is speed of wave in medium 1. To determine shape of refracted wave front, we draw a sphere of radius $v_2 \tau$, where v_2 is speed of wave in medium 2. CE represents a tangent drawn from point C on sphere, CE is the refracted wave front		
	$\sin i = \frac{BC}{AC} = \frac{v_1 \tau}{AC}$ $\sin r = \frac{AE}{AC} = \frac{v_2 \tau}{AC}$	1/2	

	$\frac{\sin i}{\sin r} = \frac{\mathbf{v}_1}{\mathbf{v}_2} = \mathbf{n}_{21}$	1/2	
	Note: Give full credit if student derives Snell's law by taking incident wavefront in denser medium.		
	$\begin{array}{c} \text{Incident wavefront} \\ \text{Medium 1} \\ v_1 \\ \text{Medium 2} \\ a_2 \\ v_2 > v_1 \\ \end{array} \xrightarrow{r \\ E} \begin{array}{c} r \\ r \\ r \\ E \end{array} r \\ r \\$		
	(b) OR		
	Reason for preferring reflecting type telescope over refractingtelescope $\frac{1}{2} + \frac{1}{2}$ Justification $\frac{1}{2} + \frac{1}{2}$		
	 No Chromatic Aberration - No refraction in mirrors No Spherical Aberration - Due to use of parabolic reflector Easy mechanical support required - Mirrors weigh less and can be supported over entire back surface. High resolving power - Due to Mirror with large diameter. Brighter image - Large mirrors gather more light waves. (Any two) 	1+1	2
22.	Finding the ratio of maximum and minimum intensities 2		
	$\frac{I_{\max}}{I_{\min}} = \frac{(\sqrt{I_1} + \sqrt{I_2})^2}{(\sqrt{I_1} - \sqrt{I_2})^2}$	1/2	
	$= \frac{I_1 + I_2 + 2\sqrt{I_1}I_2}{I_1 + I_2 - 2\sqrt{I_1}I_2}$	1/2	
	$= \frac{5I+4I}{5I-4I}$	1⁄2	
	$=\frac{9}{1}$	1⁄2	
	$\frac{I_1}{I_2} = \frac{a^2}{b^2} = \frac{4I}{I} = \frac{4}{1}$	17	
	$\frac{a}{b} = \frac{2}{1}$	72 1/2	

	$\frac{I_{\max}}{I_{\min}} = \frac{(a+b)^2}{(a-b)^2}$		1/2		
	$\frac{I_{\text{max}}}{I_{\text{min}}} = \frac{(2+1)^2}{(2-1)^2} = \frac{9}{1}$		1/2	2	
23.	Calculation of potential energy of Calculation of kinetic energy of	of electron 1 f electron 1			
	$E_n = \frac{-13.6}{n^2} eV = \text{Total energy}$ For third excited state n=4	/			
	$E_4 = \frac{-13.0}{4^2} = \frac{-13.0}{16} = -0.85$ Potential Energy = 2 × Total En = 2 × (-0.85)	5 eV ergy = 2 × E ₄) eV	1/2		
	= -1.70 eV	, ,	1/2		
	Kinetic energy = - (Total Energy) = 0.85 eV	$= -E_4$	1/2 1/2	2	
24.	Difference between intrinsic and	extrinsic semiconductor 2			
	Intrinsic semiconductor	Extrinsic semiconductor			
	1. Pure semiconductor.	Semiconductor is Doped with impurities.			
	2. Low conductivity at room temperature.	High conductivity at room temperature.	1+1		
	$3. n_e = n_h$ $n_e \neq n_h$ (Any one)Note: Give full credit if a student writes any other relevant correct answer.OR				
	(b)	~~~			
	Circuit diagram for forward and	reverse biased p-n junction diode $\frac{1}{2} + \frac{1}{2}$			
	V-I characteristic (Forward and	d Reverse bias) $\frac{1}{2} + \frac{1}{2}$			

	Forward Bias	$1/_{2} + 1/_{2}$	
		1/2 + 1/2	2
	Characteristics of silicon Diode		
25.	Formation of potential barrier 2 The diffusion current due to concentration gradient at the junction forms a		
	space charge region consisting of immobile charge carriers. Due to this an electric field is generated at the junction giving rise to drift current in a direction opposite to diffusion current.		
	The potential at which diffusion current becomes equal to drift current is	2	2
	SECTION –C		2
26.			
	a) Finding electric potential at the centre1Finding electric field at the centre1b) Finding electric potential at the centre1		
	(a) Electric potential due to point charge $V = \frac{kq}{R}$ Value of each charge = - q , Total charge = -12q Total potential $V = \frac{k(-12q)}{R}$	1⁄2	
	$V = \frac{-12kq}{R} = \frac{-12q}{4\pi \epsilon_0 R}$ By symmetry the resultant of all electric field vectors becomes zero. So electric field is zero.	½ 1	

	(b)		
	Electric potential is a scalar quantity and does not depend on placement of charges		
	-12kq $-12q$	1	
	Therefore $V = \frac{1}{R} = \frac{1}{4\pi \epsilon_0 R}$		3
27.	(a)		
	Difference between resistance and impedance 1		
	Obtaining expression for impedance 2		
	1. Resistance is the opposition offered to both alternating current and direct current while impedance is the opposition offered to alternating current only.		
	2. Resistance is independent of frequency of source while impedance depends on frequency.		
	3. Resistance is opposition offered by material of the conductor while impedance is combined opposition offered by different electrical components such as resistor, inductor or capacitor.	1	
	(Any One) (Note: Give credit of this part if a student writes any other correct answer.)		
	$\frac{\mathbf{v}_{\mathbf{R}}}{\mathbf{v}_{\mathbf{R}}}$	1∕2	
	$V_{R} = i_{m}R, V_{c} = i_{m}X_{c}, V_{L} = i_{m}X_{L}$ $i_{m} = \text{Peak value of current in the circuit.}$ $\overrightarrow{V_{L}} + \overrightarrow{V_{R}} + \overrightarrow{V_{C}} = \overrightarrow{V_{R}}$	1⁄2	
	$ \begin{array}{l} (V_m)^2 = V_R^2 + (V_C - V_L)^2 \\ = (i_m R)^2 + (i_m X_c - i_m X_L)^2 \\ = i_m \left[R^2 + (X_c - X_L)^2 \right] \\ \vdots \qquad V_m \end{array} $	1⁄2	
	$i_{m} = \frac{m}{\sqrt{R^{2} + (X_{c} - X_{L})^{2}}}$ $i_{m} = \frac{V_{m}}{Z} \text{ where } Z = \sqrt{R^{2} + (X_{c} - X_{L})^{2}} = \text{ impedance}$	1⁄2	

	OR (b) Finding condition for resonance 1 Factors affecting resonant frequency 1		
	Graph 1 $Z = \sqrt{R^2 + (X_L - X_c)^2}$ For maximum arrest <i>T</i> should be minimum therefore to minimize <i>T</i>	1/2	
	For maximum current, Z should be minimum therefore to minimize Z $X_L = X_C$	1⁄2	
	Alternatively $X_{L} = X_{C}$ $\omega L = -\frac{1}{2}$	1⁄2	
	$\omega L = \frac{1}{\omega C}$ $\omega_{\rm r} = \frac{1}{\sqrt{LC}}$	1∕2	
	Resonant Frequency depends on value of Inductance and Capacitance	$\frac{1}{2} + \frac{1}{2}$	
	$\frac{1}{\omega_n}$	1	3
28.	Findinga) Induced emf2b) Mutual inductance between solenoid and coil1		
	a) magnetic field produced in the solenoid near the center $B = \mu_o nI$ Flux linked with the coil wound over solenoid $\phi = NBA = N \pi r^2 B$	1⁄2	
	$= N \pi r^{2} \mu_{o} nI$ Induced emf e = $\frac{-d\phi}{dt} = -\pi r^{2} Nn\mu_{o} \frac{dI}{dt}$ (i)	1/2 1/2	
	$= - \mu_0 \pi r^2 n N I_0 \omega \cos \omega t$	1/2	

$$= \frac{-\overline{p}}{4\pi \epsilon_{0}(r^{2} + a^{2})^{3/2}}$$
Deduct *K* mark if the expression of electric field is not in vector form.
ii) At far off point $r > a$

$$\overline{E} = \frac{-\overline{p}}{4\pi \epsilon_{o}(r^{2})^{3}}$$
When distance is halved.

$$\overline{E} = \frac{-\overline{p}}{4\pi \epsilon_{o}(r^{2})^{3}}$$

$$= \frac{-8\overline{p}}{4\pi \epsilon_{o}(r^{2})^{3}}$$

$$E$$
 becomes 8 times
iii)

$$p_{n} = q \times 2Cm \text{ (along OA)}$$

$$p_{n} = q \times 2Cm \text{ (along OD)}$$

$$p_{ax} = \sqrt{p_{1}^{2} + p_{2}^{2}}$$

$$= 2\sqrt{2}qCm$$
Electric field at centre O

$$E = \frac{k \times 2\sqrt{2}qCm}{(r^{2} + a^{2})^{3/2}}$$

$$at point O, r = 0, a = 1 \text{ m}$$

$$E = \frac{k \times 2\sqrt{2}q}{2} = 2\sqrt{2}kq = \frac{2\sqrt{2}q}{4\pi \epsilon_{o}}}$$

$$42$$

$$E_{2} = \frac{2kq \times a}{((\frac{1}{\sqrt{2}})^{2} + (\frac{1}{\sqrt{2}})^{2})^{2/2}} = \frac{2kq a}{(\frac{1}{2} + \frac{1}{2})^{2/2}} = 2kq a}$$

$$E_{act} = E_{1} + E_{2} - 4kqa = \frac{1}{4\pi} \frac{1}{e_{a}} \times 4 \times \frac{1}{\sqrt{2}} \times q$$

$$= 2\sqrt{2}kq = \frac{2\sqrt{2}q}{4\pi} \frac{1}{e_{a}}$$
Along DC
$$5$$

$$32. (a)$$

$$(i) Statement of Biot-Savart's law 1
Expression for magnetic field 12
Diagram for magnetic field 11es 1/2
Diagram for magnetic field 11$$

$\therefore \theta = 90^\circ, \sin 90^\circ = 1$		
Hence dB= $\frac{\mu_o}{2}$		
$4\pi a^2$		
$\frac{2\pi a}{2\pi a}$ $\frac{2\pi a}{2\pi a}$ $\frac{Ldl}{Ldl}$		
$B=\int_{o} dB = \int_{0} \frac{\mu_{o}}{4\pi} \frac{IdI}{a^{2}}$	1/2	
$B = \frac{\mu_o}{4\pi} \times \frac{I}{a^2} \times 2\pi a$	17	
$B = \frac{\mu_o I}{I}$	1/2	
2a		
Note: Give full credit of 2 marks if a student derives the expression for		
magnetic field at the axis of the loop and then puts the distance of point as 0		
Troin the centre.	1⁄2	
ii) $q=e$, $v=10^7 m s^{-1}$, $r=10^{-10} m$		
$i = \frac{q}{1}$		
	1/2	
$= \frac{qv}{r}$		
$2\pi r$		
$=$ $\frac{eV}{eV}$		
$2\pi r$	1/2	
$=\frac{1.6\times10^{-19}\times10^{7}}{}$		
$2 \times \pi \times 10^{-10}$		
$= \frac{0.8}{10^{-2}} \times 10^{-2} A$	17	
π	1/2	
$= 0.255 \times 10^{-2} A = 2.55 \text{ mA}$		
$\cap \mathbf{P}$		
b)		
i) Derivation of expression for force 2		
Statement of Rule ¹ / ₂		
Conditions for maximum and minimum force $\frac{1}{2} + \frac{1}{2}$		
ii) Calculation of magnitude of force $1\frac{1}{2}$		
Consider a rod of uniform cross sectional area A and length <i>l</i> . Let the		
Thus the total number of mobile charge carriers in it is n <i>l</i> A		
For steady current I drift velocity of electrons \vec{y} in the presence of	1/2	
For steady current i, unit velocity of electrons V_d , in the presence of		

 diffraction pattern (2) Two factors affecting fringe width in young's double ¹/₂ + ¹/₂ slit experiment (i) (1) calculation of angular separation 1 (2) calculation of distance between two maxima 1 (i) (1) (a) The interference pattern has a number of equally spaced bright and dark bands while diffraction pattern has a central bright maximum which is twice as wide as the other maxima. (b) Interference pattern is obtained by superposing two waves originating from two narrow slits, while diffraction pattern is a superposition of a continuous family of waves originating from each point on a single slit. (c) The maxima in interference pattern is obtained at angle λ/a, while the first minima is obtained at same angle λ/a for diffraction pattern. (d) In interference pattern the intensity of bright fringes remain same while 	1+1
 (2) Two factors affecting fringe width in young's double ^{1/2} + ^{1/2} slit experiment (i) (1) calculation of angular separation 1 (2) calculation of distance between two maxima 1 (i) (1) (a) The interference pattern has a number of equally spaced bright and dark bands while diffraction pattern has a central bright maximum which is twice as wide as the other maxima. (b) Interference pattern is obtained by superposing two waves originating from two narrow slits, while diffraction pattern is a superposition of a continuous family of waves originating from each point on a single slit. (c) The maxima in interference pattern is obtained at angle λ/a, while the first minima is obtained at same angle λ/a for diffraction pattern. (d) In interference pattern the intensity of bright fringes remain same while 	1+1
 (i) (1) calculation of angular separation 1 (2) calculation of distance between two maxima 1 (i) (1) (a) The interference pattern has a number of equally spaced bright and dark bands while diffraction pattern has a central bright maximum which is twice as wide as the other maxima. (b) Interference pattern is obtained by superposing two waves originating from two narrow slits, while diffraction pattern is a superposition of a continuous family of waves originating from each point on a single slit. (c) The maxima in interference pattern is obtained at angle λ/a, while the first minima is obtained at same angle λ/a for diffraction pattern. (d) In interference pattern the intensity of bright fringes remain same while 	1+1
 (i) (1) enclution of distance between two maxima 1 (i) (1) (a) The interference pattern has a number of equally spaced bright and dark bands while diffraction pattern has a central bright maximum which is twice as wide as the other maxima. (b) Interference pattern is obtained by superposing two waves originating from two narrow slits, while diffraction pattern is a superposition of a continuous family of waves originating from each point on a single slit. (c) The maxima in interference pattern is obtained at angle λ/a, while the first minima is obtained at same angle λ/a for diffraction pattern. (d) In interference pattern the intensity of bright fringes remain same while 	1+1
 (i) (1) (a) The interference pattern has a number of equally spaced bright and dark bands while diffraction pattern has a central bright maximum which is twice as wide as the other maxima. (b) Interference pattern is obtained by superposing two waves originating from two narrow slits, while diffraction pattern is a superposition of a continuous family of waves originating from each point on a single slit. (c) The maxima in interference pattern is obtained at angle λ/a, while the first minima is obtained at same angle λ/a for diffraction pattern. (d) In interference pattern the intensity of bright fringes remain same while 	1+1
 (1) (1) (a) The interference pattern has a number of equally spaced bright and dark bands while diffraction pattern has a central bright maximum which is twice as wide as the other maxima. (b) Interference pattern is obtained by superposing two waves originating from two narrow slits, while diffraction pattern is a superposition of a continuous family of waves originating from each point on a single slit. (c) The maxima in interference pattern is obtained at angle λ/a, while the first minima is obtained at same angle λ/a for diffraction pattern. (d) In interference pattern the intensity of bright fringes remain same while 	1+1
 (a) The interference pattern has a number of equally spaced origin and dark bands while diffraction pattern has a central bright maximum which is twice as wide as the other maxima. (b) Interference pattern is obtained by superposing two waves originating from two narrow slits, while diffraction pattern is a superposition of a continuous family of waves originating from each point on a single slit. (c) The maxima in interference pattern is obtained at angle λ/a, while the first minima is obtained at same angle λ/a for diffraction pattern. (d) In interference pattern the intensity of bright fringes remain same while 	1+1
 as wide as the other maxima. (b) Interference pattern is obtained by superposing two waves originating from two narrow slits, while diffraction pattern is a superposition of a continuous family of waves originating from each point on a single slit. (c) The maxima in interference pattern is obtained at angle λ/a, while the first minima is obtained at same angle λ/a for diffraction pattern. (d) In interference pattern the intensity of bright fringes remain same while 	1+1
 (b) Interference pattern is obtained by superposing two waves originating from two narrow slits, while diffraction pattern is a superposition of a continuous family of waves originating from each point on a single slit. (c) The maxima in interference pattern is obtained at angle λ/a, while the first minima is obtained at same angle λ/a for diffraction pattern. (d) In interference pattern the intensity of bright fringes remain same while 	1+1
continuous family of waves originating from each point on a single slit. (c) The maxima in interference pattern is obtained at angle λ/a , while the first minima is obtained at same angle λ/a for diffraction pattern. (d) In interference pattern the intensity of bright fringes remain same while	1+1
(c) The maxima in interference pattern is obtained at angle λ/a , while the first minima is obtained at same angle λ/a for diffraction pattern. (d) In interference pattern the intensity of bright fringes remain same while	1+1
first minima is obtained at same angle λ / a for diffraction pattern. (d) In interference pattern the intensity of bright fringes remain same while	1+1
(d) In interference pattern the intensity of bright fringes remain same while	1+1
in diffraction the intensity falls as we go to successive maxima away from	
the center on either side.	
(any two)	
(2) Factors affecting fringes width	
Wave length (λ) / distance of screen from slits (D) / separation between	$\frac{1}{2} + \frac{1}{2}$
slits (d).	
(any two)	1/2
$\begin{array}{c} (n) (1) \qquad \text{d } \sin \theta = n \lambda \\ n = 1 \end{array}$	72
$\sin \theta - \lambda$	
$\sin \theta = \frac{1}{d}$	
For small angle $\sin \theta \approx \theta = \frac{\lambda}{1001} = \frac{1}{1000}$ radian.	1/2
100λ 100	
(2) $\beta = \lambda D = \rho D$	1/2
$(2) p - \frac{d}{d} = 0D$	
$=\frac{1}{100} \times 50 \times 10^{-2}$	
$100 - 50 \times 10^{-4} \mathrm{m}$	
$= 50 \times 10^{\circ} m$ = 5 mm	1/2
OR	
i) Derivation of relation between u and v 3 ii) Finding apparent position 2	

and the second se	
N/	
n, i n _a	
	1
C I	1
↓ <i>u →</i>	
A source that the exercise of the surface is small as commonly	l to other
distance involved so that small angle approximation can be	made
For small angles	made.
for ΔNOC is the exterior angle	
$\therefore = \sqrt{NOM} + \sqrt{NCM}$	
$\dots 1 - \angle I \vee O M + \angle I \vee C M$	
$i = \frac{MN}{2NL} + \frac{MN}{2NL} $ (i)	1/2
OM MC	
Similarly $\mathbf{r} = \angle NCM - \angle NIM$	
$=\frac{MN}{MN}-\frac{MN}{MN}$ (ii)	
MC MI	
By Snell's law	
$n_1 \sin 1 = n_2 \sin r$	1/
for small angles	1/2
$n_1 1 - n_2 r$	
substituting i and r from (i) and (ii) we get	
n_1 n_2 $n_3 - n_1$	
$\frac{1}{OM} + \frac{2}{MI} = \frac{2}{MC}$	1/2
Applying Cartesian coordinates	
OM = -u, MI = +v, $MC = +R$	
$n_2 n_1 n_2 - n_1$	
$\frac{1}{v} - \frac{1}{u} = \frac{1}{R}$	1/2
(ii) $\frac{n_2}{n_1} - \frac{n_1}{n_2} - \frac{n_2}{n_1} - \frac{n_2}{n_1}$	
$\frac{(n)}{v} - \frac{1}{u} - \frac{1}{R}$	
R= - 6 cm, u = - 3 cm, $n_1 = 1.5$ $n_2 = 1$	
$\frac{1}{1} + \frac{1.5}{1.5} - \frac{1 - 1.5}{1 - 1.5}$	1/2
v 3 -6	
$\frac{1}{1} - \frac{0.5}{1.5} - \frac{1.5}{1.5}$	
$\overline{v} = \overline{6} = \overline{3}$	1/2
1_0.5-3	
$\overline{v} - \overline{6}$	1/2
1	
$\frac{1}{v} = \frac{1}{6}$	17
v = -2.4 cm	1/2
from the left surface inside the sphere	

