
MARKING SCHEME

Senior Secondary School Examination TERM-II, 2022

PHYSICS (Subject Code-042)

[Paper Code : 55/1/1]

Q. No.	EXPECTED ANSWER / VALUE POINTS	Marks	Total Marks
	SECTION—A		
1.	Energy band diagram \frac{1}{2} + \frac{1}{2} Significance 1		
	E_{C} E_{C} $= 0.01 \text{ eV}$ E_{D} E_{V} E_{V} $= 0.01 - 0.05 \text{ eV}$ E_{C} E_{V} $= 0.01 - 0.05 \text{ eV}$ E_{V}	1/2 + 1/2	
	n-type p-type		
	Significance		
	n-type semiconductors – small energy gap between donor level and conduction band which can be easily covered by thermally excited electrons.	1/2	
	p- type semiconductors - small energy gap between acceptor level and valence band which can be easily covered by thermally excited electrons.	1/2	
	Alternatively		
	The conductivity of semiconductor is improved with the creation of donor and acceptor levels.		2

3.	Explanation 2		
	The unidirectional property of a diode makes it suitable for rectification.	2	
	Alternatively	2	
	The diode conducts when forward biased and does not conduct when reverse biased.		
	(Award 1 mark if a student draws the forward and reverse characteristics of a diode.)		2
	SECTION- B		
4.	Definition of distance of closest approach Effect on distance of closest approach due to change in K.E. 1 ½		
	The minimum distance up to which an alpha particle travel along the central line of the nucleus before it rebounds is called distance of closest approach.	1 ½	
	Alternatively		
	An alpha particle travelling directly towards the centre of a nucleus slows down as it approaches the nucleus due to repulsive force. At a distance r_0 from the nucleus, the α - particle stops and its total kinetic energy converts into electrostatic potential energy. This distance r_0 is called distance of closest approach.		
	$r_0 = \frac{2Ze^2}{4\pi \in_0 K.E.}$	1/2	
	i.e., $r_0 \propto \frac{1}{K.E.}$	1/2	
	as K is doubled, r_0 is halved.	1/2	
	(Award full $1\frac{1}{2}$ marks if a student writes r_0 is halved without writing formula)		3
5.	Finding distance from source 2 Finding nature of image 1		
	Relation for concave spherical surface $\mu_1, \mu_2, \mu_2 - \mu_1$		
	$\frac{\mu_1}{-u} + \frac{\mu_2}{v} = \frac{\mu_2 - \mu_1}{R}$	1/2	
	$\frac{1}{-u} + \frac{\mu}{v} = \frac{\mu - 1}{R}$	1/2	
	$\frac{1}{-(-24)} + \frac{1 \cdot 5}{v} = \frac{1 \cdot 5 - 1}{-60}$		
		1/2	
	∴ v = -30 cm		
1	l e e e e e e e e e e e e e e e e e e e	l	l l

Calculation of mass defect 2 Calculation of energy released 1 $H + {}^{3}_{1}H \rightarrow {}^{4}_{2}He + n + Energy$ Hass defect = mass of reactants – mass of products $m = m({}^{2}_{1}H + {}^{3}_{1}H) - m({}^{4}_{2}He + {}^{1}_{0}n)$ Hass defect = $(2 \cdot 014102 + 3 \cdot 016049) - (4 \cdot 002603 + 1 \cdot 008665)$ $= 5 \cdot 030151 - 5 \cdot 011268$ $= 0 \cdot 018883u$ Hergy released = $\Delta m \times 931.5 \text{ MeV}$ $= 0.018883 \times 931.5 \text{ MeV}$ $= 17 \cdot 58 \text{ MeV}$ Principle of optical fibre 1 Diagram of TIR 1 Use of optical fibre $\frac{1}{12}$ Use of optical fibre $\frac{1}{12}$	1 1/2 1/2 1/2 1/2 1/2	3
Calculation of energy released 1 $H + {}^{3}_{1}H \rightarrow {}^{4}_{2}He + n + Energy$ It ass defect = mass of reactants – mass of products $m = m({}^{2}_{1}H + {}^{3}_{1}H) - m({}^{4}_{2}He + {}^{1}_{0}n)$ It ass defect = $(2 \cdot 014102 + 3 \cdot 016049) - (4 \cdot 002603 + 1 \cdot 008665)$ $= 5 \cdot 030151 - 5 \cdot 011268$ $= 0 \cdot 018883u$ $= 0 \cdot 018883u$ nergy released = $\Delta m \times 931.5 \text{ MeV}$ $= 0.018883 \times 931.5 \text{ MeV}$ $= 17 \cdot 58 \text{ MeV}$ Principle of optical fibre 1 Diagram of TIR 1	1/2 1/2 1/2 1/2	3
Tass defect = mass of reactants – mass of products $m = m({}_{1}^{2}H + {}_{1}^{3}H) - m({}_{2}^{4}He + {}_{0}^{1}n)$ Tass defect = $(2 \cdot 014102 + 3 \cdot 016049) - (4 \cdot 002603 + 1 \cdot 008665)$ = $5 \cdot 030151 - 5 \cdot 011268$ = $0 \cdot 018883u$ nergy released = $\Delta m \times 931.5 \text{ MeV}$ = $0.018883 \times 931.5 \text{ MeV}$ = $17 \cdot 58 \text{ MeV}$ Principle of optical fibre 1 Diagram of TIR 1	1/2 1/2 1/2 1/2	3
Tass defect = mass of reactants – mass of products $m = m({}_{1}^{2}H + {}_{1}^{3}H) - m({}_{2}^{4}He + {}_{0}^{1}n)$ Tass defect = $(2 \cdot 014102 + 3 \cdot 016049) - (4 \cdot 002603 + 1 \cdot 008665)$ = $5 \cdot 030151 - 5 \cdot 011268$ = $0 \cdot 018883u$ nergy released = $\Delta m \times 931.5 \text{ MeV}$ = $0.018883 \times 931.5 \text{ MeV}$ = $17 \cdot 58 \text{ MeV}$ Principle of optical fibre 1 Diagram of TIR 1	1/2 1/2 1/2 1/2	3
$m = m({}_{1}^{2}H + {}_{1}^{3}H) - m({}_{2}^{4}He + {}_{0}^{1}n)$ Hass defect = $(2 \cdot 014102 + 3 \cdot 016049) - (4 \cdot 002603 + 1 \cdot 008665)$ = $5 \cdot 030151 - 5 \cdot 011268$ = $0 \cdot 018883u$ nergy released = $\Delta m \times 931.5 \text{ MeV}$ = $0.018883 \times 931.5 \text{ MeV}$ = $17 \cdot 58 \text{ MeV}$ Principle of optical fibre 1 Diagram of TIR 1	1/2	3
Tass defect = $(2 \cdot 014102 + 3 \cdot 016049) - (4 \cdot 002603 + 1 \cdot 008665)$ = $5 \cdot 030151 - 5 \cdot 011268$ = $0 \cdot 018883u$ nergy released = $\Delta m \times 931.5 \text{ MeV}$ = $0.018883 \times 931.5 \text{ MeV}$ = $17 \cdot 58 \text{ MeV}$ Principle of optical fibre 1 Diagram of TIR 1	1/2	3
$= 5 \cdot 030151 - 5 \cdot 011268$ $= 0 \cdot 018883u$ nergy released = $\Delta m \times 931.5 \text{ MeV}$ $= 0.018883 \times 931.5 \text{ MeV}$ $= 17 \cdot 58 \text{ MeV}$ Principle of optical fibre Diagram of TIR 1	1/2	3
$= 0.018883u$ nergy released = $\Delta m \times 931.5 \text{ MeV}$ $= 0.018883 \times 931.5 \text{ MeV}$ $= 17.58 \text{ MeV}$ Principle of optical fibre Diagram of TIR 1	1/2	3
nergy released = $\Delta m \times 931.5 \text{ MeV}$ = $0.018883 \times 931.5 \text{ MeV}$ = $17 \cdot 58 \text{ MeV}$ Principle of optical fibre 1 Diagram of TIR 1		3
Principle of optical fibre 1 Diagram of TIR 1	1/2	3
Diagram of TIR 1		
n optical fibre works on the principle of Total internal reflection. Rarer medium (Air) O ₁ O ₂ O ₃ D ₄ N N Totally reflected ray Reflected ray	1	
lternatively		
High n		
Jses of optical fibres(any two)		
 i) Medical and optical examination (endoscopy). ii) Transmission and reception of signals iii) Photometric sensors. 	1/2+1/2	3
Calculation of distance of first minimum 1½ Calculation of distance of second maximum 1½		
	Denser medium vater are reflected rays Iternatively Low n Ises of optical fibres(any two) i) Medical and optical examination (endoscopy). ii) Transmission and reception of signals iii) Photometric sensors. Calculation of distance of first minimum 1½	Iternatively Low n Sees of optical fibres(any two) i) Medical and optical examination (endoscopy). ii) Transmission and reception of signals iii) Photometric sensors. Calculation of distance of first minimum 1 ½

	(i) $y = \frac{\lambda D}{a}$	1/2	
	_ 600×10 ⁻⁹ ×1	14	
	$= \frac{600 \times 10^{-9} \times 1}{0.2 \times 10^{-3}}$	1/2	
	$=3\times10^{-3}$ m $=3$ mm	1/2	
	(ii) $y = (n+1)\lambda D$		
	(ii) $y = (n + \frac{1}{2}) \frac{\lambda D}{a}$	1/2	
	$y = (2 + \frac{1}{2})\frac{\lambda D}{a}$		
		1/2	
	$y = \frac{5}{2} \frac{\lambda D}{a}$		
	$y = \frac{5}{2} \times \frac{600 \times 10^{-9} \times 1}{0.2 \times 10^{-3}}$		3
	$=7.5 \times 10^{-3} = 7.5 \text{ mm}$	1/2	
	= 7.5×10 = 7.5 mm		
	OR		
8(b).	Finding the notic of newspaper 11/2		
	Finding the ratio of powers 1½ Finding the power of combination and nature 1½		
	$\sim r$ $\sim r$ $\left(1 - 1\right)$	1/4	
	(i) From $P = (\mu - 1) \left(\frac{1}{R_1} - \frac{1}{R_2} \right)$	1/2	
	$P_1 = P_{convex} = (\mu - 1) \left(\frac{1}{R_1} - (-\frac{1}{R_2}) \right)$		
		1/2	
	$=(\mu-1)(\frac{2}{R})$		
	$\mathbf{p} = \mathbf{p} \left(1 \cdot 1 \cdot 1 \right)$		
	$P_2 = P_{concave} = (\mu - 1) \left(-\frac{1}{R_1} - \frac{1}{R_2} \right)$		
	$=-(\mu-1)(\frac{2}{R})$		
	R'		
	$P_1 \qquad (\mu_1 - 1) \qquad (\mu_1 - 1)$	1/2	
	$\therefore \frac{P_1}{P_2} = \frac{(\mu_1 - 1)}{-(\mu_2 - 1)} = \frac{(\mu_1 - 1)}{(1 - \mu_2)}$		
		1/2	
	$(ii) P = P_1 + P_2 \tag{2}$	72	
	$= (\mu_1 - 1) \left(\frac{2}{R}\right) + (-(\mu_2 - 1)) \left(\frac{2}{R}\right)$		
	$P = \frac{2(\mu_1 - \mu_2)}{R}$	1/	
	A	1/2	
	As $\mu_2 > \mu_1$, <i>P</i> is negative \therefore Nature is diverging	1/2	3
	valure is diverging	, - <u>-</u>	5

9.	i) Calculation of energy of Radiation 1 ½		
	ii) Calculation of kinetic energy of photoelectron 1 ½		
	i) Energy of incident radiation		
	$E = hv = h\frac{c}{\lambda}$	1/2	
	$=\frac{6\cdot63\times10^{-34}\times3\times10^8}{330\times10^{-9}}$	1/2	
	$= 6.027 \times 10^{-19} \text{ J}$	1/2	
	-0.021×10 J	, 2	
	ii) Kinetic energy of photoelectron	1/2	
	$K.E. = E - \phi_0$	72	
	$= (6.027 \times 10^{-19} - 3.5 \times 10^{-19}) \text{ J}$	1/2	
	$=2.527\times10^{-19} \text{ J}$	1/2	3
0.	Statement of working principle of LED 1		
	Advantages $\frac{1}{2} + \frac{1}{2}$		
	Disadvantages ½ +½		
	When the diode is forward biased, electrons are sent from n region to p region		
	and holes are sent from p region to n region. At the junction the concentration of minority carriers increases. Thus at the junction, the excess minority carriers	1	
	recombine with majority carriers and energy is released in the form of photons.	1	
	Advantages (any two):		
	(i) Low operational voltage		
	(ii) Less power consumption	1/2+1/2	
	(iii) Fast action		
	(iv) Long life and ruggedness Disadvantages (any two):		
	(i) High cost		
	(ii) Can get damaged due to overheating	1/2+1/2	
	(iii) Excess of voltage or current can damage LED		3
	(Note: Award last 1 mark, even if disadvantages are not given.)		
1(a).			
	i) Reason 1 ii) Identification of radiation 1		
	Uses 1/2 + 1/2		
	i) Refraction arises through interaction of incident light with the atomic		
	i) Refraction arises through interaction of incident light with the atomic constituents of matter. Atoms may be viewed as oscillators which take up the	1	
	constituents of matter. Atoms may be viewed as oscillators which take up the frequency of the external agency causing forced oscillations. Thus the	1	
	constituents of matter. Atoms may be viewed as oscillators which take up the	1	

	Alternatively		
	Frequency is the characteristic of the source of light. So it remains unaffected.		
	But λ depends on refractive index (μ) of the medium as —		
	$\lambda_m = \frac{\lambda_o}{\mu}$		
	μ		
	ii) Infrared/ Microwaves/ Radio waves	1	
	Uses of Infrared rays (any two)		
	Remote control		
	• Green house effect		
	Photography in foggy conditionTo reveal secret writings	$\frac{1}{2} + \frac{1}{2}$	
	Infrared lamps	72 T 72	
	Uses of Microwaves (any two)		
	Radar System		
	Geostationary satellite		
	Microwave ovens		
	Uses of Radiowaves (any two)		
	TV transmissionRadio broadcast		3
	Mobile transmission		
11(b).			
` ,	OR		
	i)Diagram 1 Proof of relation $\delta = (i+e) - A$ 1 ½		
	ii)Finding minimum deviation $\frac{1}{2}$		
	7		
	i) Diagram		
	M 38 R	1	
	P S		
	$\delta = (i - r_1) + (e - r_2)$	1/2	
	$\delta = (i+e) - (r_1 + r_2)$,-	
	In Quadrilateral AQOR \angle Q= \angle R = 90° \therefore \angle A+ \angle O = 180°(1) In \triangle QOR	1/2	
	$O + r_1 + r_2 = 180^{\circ}$ (2)		
	Comparing (1) and (2)		
	$\therefore A = r_1 + r_2$	1/	
	$\therefore \delta = (i+e) - A$	1/2	

	ii) If a ray passes symmetrically through a prism (parallel to base of prism), the value of angle of deviation is minimum. At this angle \angle i= \angle e and \angle r ₁ = \angle r ₂	1/2	3	
	SECTION- C			
12.	I(B)	1		
	II (C)	1		
	III (D)	1		
	IV (C)	1		
	V (C)	1	5	

* * *