Strictly Confidential: (For Internal and Restricted use only) Senior School Certificate Examination-2020 Marking Scheme – PHYSICS THEORY (042)

(55/1/1)

General Instructions: -

- 1. You are aware that evaluation is the most important process in the actual and correct assessment of the candidates. A small mistake in evaluation may lead to serious problems which may affect the future of the candidates, education system and teaching profession. To avoid mistakes, it is requested that before starting evaluation, you must read and understand the spot evaluation guidelines carefully. Evaluation is a 10-12 days mission for all of us. Hence, it is necessary that you put in your best efforts in this process.
- 2. Evaluation is to be done as per instructions provided in the Marking Scheme. It should not be done according to one's own interpretation or any other consideration. Marking Scheme should be strictly adhered to and religiously followed. However, while evaluating, answers which are based on latest information or knowledge and/or are innovative, they may be assessed for their correctness otherwise and marks be awarded to them.
- 3. The Head-Examiner must go through the first five answer books evaluated by each evaluator on the first day, to ensure that evaluation has been carried out as per the instructions given in the Marking Scheme. The remaining answer books meant for evaluation shall be given only after ensuring that there is no significant variation in the marking of individual evaluators.
- 4. Evaluators will mark(√) wherever answer is correct. For wrong answer 'X"be marked. Evaluators will not put right kind of mark while evaluating which gives an impression that answer is correct and no marks are awarded. This is most common mistake which evaluators are committing.
- 5. If a question has parts, please award marks on the right-hand side for each part. Marks awarded for different parts of the question should then be totaled up and written in the left-hand margin and encircled. This may be followed strictly.
- 6. If a question does not have any parts, marks must be awarded in the left-hand margin and encircled. This may also be followed strictly.
- 7. If a student has attempted an extra question, answer of the question deserving more marks should be retained and the other answer scored out.
- 8. No marks to be deducted for the cumulative effect of an error. It should be penalized only once.
- 9. A full scale of marks 0-70 has to be used. Please do not hesitate to award full marks if the answer deserves it.
- 10. Every examiner has to necessarily do evaluation work for full working hours i.e. 8 hours every day and evaluate 20 answer books per day in main subjects and 25 answer books per day in other subjects (Details are given in Spot Guidelines).
- 11. Ensure that you do not make the following common types of errors committed by the Examiner in the past:-
 - Leaving answer or part thereof unassessed in an answer book.
 - Giving more marks for an answer than assigned to it.
 - Wrong totaling of marks awarded on a reply.
 - Wrong transfer of marks from the inside pages of the answer book to the title page.
 - Wrong question wise totaling on the title page.
 - Wrong totaling of marks of the two columns on the title page.
 - Wrong grand total.

- Marks in words and figures not tallying.
- Wrong transfer of marks from the answer book to online award list.
- Answers marked as correct, but marks not awarded. (Ensure that the right tick mark is correctly and clearly indicated. It should merely be a line. Same is with the X for incorrect answer.)
- Half or a part of answer marked correct and the rest as wrong, but no marks awarded.
- 12. While evaluating the answer books if the answer is found to be totally incorrect, it should be marked as cross (X) and awarded zero (0)Marks.
- 13. Any unassessed portion, non-carrying over of marks to the title page, or totaling error detected by the candidate shall damage the prestige of all the personnel engaged in the evaluation work as also of the Board. Hence, in order to uphold the prestige of all concerned, it is again reiterated that the instructions be followed meticulously and judiciously.
- 14. The Examiners should acquaint themselves with the guidelines given in the Guidelines for spot Evaluation before starting the actual evaluation.
- 15. Every Examiner shall also ensure that all the answers are evaluated, marks carried over to the title page, correctly totaled and written in figures and words.
- 16. The Board permits candidates to obtain photocopy of the Answer Book on request in an RTI application and also separately as a part of the re-evaluation process on payment of the processing charges.

	MARKING SCHEME: PHYSICS		
Q.No.	QUESTION PAPER CODE: 55/1/1 Value Points/Expected Answer	Marks	Total
			Marks
	SECTION A		T .
1	(A)	1	1
	no net charge is enclosed by the surface		
2	(C)	1	1
	-qLE		
3	(C)	1	1
	No current flows in the potentiometer wire at balance		
4	(B)	1	1
	3:2		
5	(D)	1	1
	material of the turns of the coil		
6	(A)	1	1
	increases the resolving power of telescope		
7	(A)	1	1
	1.47		
8	(A)	1	1
	red colour		
9	(D)	1	1
	The stability of atom was established by the model		
10	(C)	1	1
	1:3		
11	0.15G	1	1
12	Eddy	1	1
13	Four times	1	1
14	Integral	1	1
	OR Nucleons		
15	$\sqrt{3}$	1	1
16	$ \oint B. dl = \mu_0(i_c + i_d) $	1	1
17	Decreases or reduce	1	1
18	4.8 fermi	1	1
10	OR 1	1	1
10	1836	4	4
19	M ₂ Si & Co. connect he wood for fobrication of wisible LED because	1	1
20	Si & Ge cannot be used for fabrication of visible LED because their energy gap is less 1.8eV	1	1

1 mark known resistance 1 mark		
	1/2	
palanced wheatstone	1/2	
known)	1	2
1 mark ½ mark		
	1/2	
$\left(\frac{2}{C_2}\right) \frac{\epsilon_0 A}{d}$	1	
	1/2	2
	½ mark the combination 1 mark	palanced wheatstone 1/2 1/2 mark the combination 1 mark 1/2 mark 1/2 1/2 1/2 1/2 1/2

23				
	Definition of half life	1 mark		
	Determination of ratio R ₁ and R ₂	1 mark		
	The time interval in which the number of radioact reduced / disintegrated to half of initial value	tive nuclei		
	Let R ₁ and R ₂ be their activities then		1	
	$R_1 = \lambda_1 N_1$			
	$R_2 = \lambda_2 N_2$		1/2	
	$\frac{R_1}{R_2} = \frac{\lambda_1 N_1}{\lambda_2 N_2} = \frac{\frac{N_1}{T_1}}{\frac{N_2}{T_2}} = \frac{N_1 T_2}{N_2 T_1}$		1/2	2
24	Definition of wavefront	½ mark		
	Figure	½ mark		
	Derivation of law of refraction	1 mark		
	Wavefront is defined as the surface of constant ph Alternatively It is a locus of all the points in the same phase of		1/2	
	Incident wavefront Medium 1 v_1 v_2 v_3 Refracted wavefront		1/2	
	$\sin i = \frac{BC}{AC} = \frac{v_1 t}{AC}$		1/2	
	$\sin r = \frac{AE}{AC} = \frac{v_2 t}{AC}$			
	$\frac{\sin i}{\sin r} = \frac{v_1}{v_2}$		1/2	2
	OR			

	Lens Maker's formula 1 mark Derivation of focal length of three lenses 1 mark		
	$\because \frac{1}{v} - \frac{1}{u} = (n-1)\left(\frac{1}{R_1} - \frac{1}{R_2}\right) 1$	1	
WI	nen u= ∞ and $v = f$ $\frac{1}{f} = (n-1)\left(\frac{1}{R_1} - \frac{1}{R_2}\right) 2$	1/2	
Fro	$\left[n=\frac{n_2}{n_1}\right]$ om Eq 1 and 2 $\frac{1}{f}=\frac{1}{v}-\frac{1}{u} \ then \ lens \ formula$	1/2	2
	yen if the student derives $\frac{1}{f} = \frac{1}{v} - \frac{1}{u}$ for biconvex lens, award $\frac{1}{2}$ marks]		
	Magnetic field at point P 1 ½ mark Curve ½ mark		
a)	$B = \frac{\mu_o I}{2\pi x}$	1/2	
	$B_P = B_1 - B_2 = \frac{\mu_0 I}{2\pi x} - \frac{\mu_0 I}{2\pi (d - x)} = \frac{\mu_0 I (d - 2x)}{2\pi (d - x)x}$	1	
b)	B A a/2	1/2	2

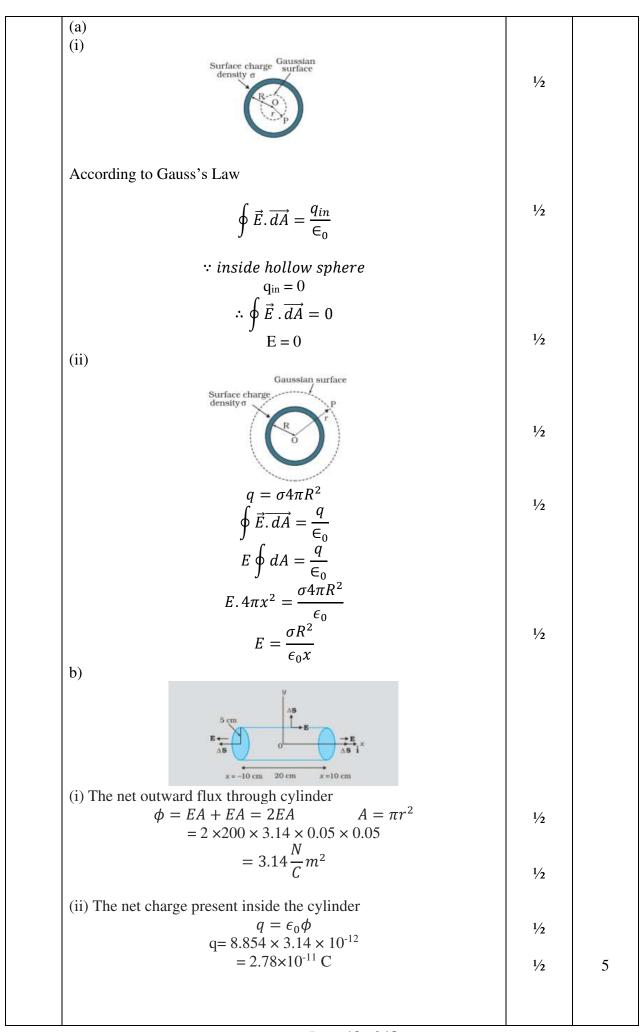
Page 6 of 18

Г		1/		
	Electrostatic force= centripetal force	½ mark		
	Angular momentum= $\frac{nh}{2\pi}$	½ mark		
	Formula for radius of nth orbit	1 mark		
_	$F_c = F_E$	_		
	$\frac{m_e v_n^2}{r_n} = \frac{Kze^2}{r_n^2}$		1/2	
Ву	$m_e v_n^2 r_n = Kze^2$ Bohr's second postulate			
	$L = m_e v_n r_n = \frac{nh}{2\pi}$		1/2	
	$r_n = \frac{n^2 h^2}{4\pi^2 m_e k e^2 Z}$ $r_n = \frac{n^2 h^2}{4\pi^2 m_e k e^2} \ (\because Z = 1)$		1	
	OR			
	Two observations 1 mar	·k		
	Diagram 1 mar	·k		
(ii)	There exists a threshold frequency below wh photoelectron is ejected. KE of electron depends linearly on frequency independent of intensity of radiation. There exists a threshold frequency below who photoelectron is ejected.		1/2	
	$I_3 > I_2 > I_1$ By the state of the state		1	
	$\begin{array}{ccc} -V_0 & 0 \\ & \longleftarrow \text{Retarding potential} & \text{Collector plate} & \longrightarrow \\ & & \text{potential} \end{array}$			
[or	nly curve is essential to draw]			
[or	nly curve is essential to draw]			

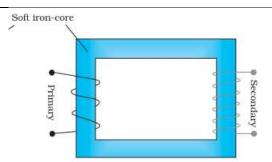
Page **7** of **18**

Explanation of depletion layer and potential	ıl barrier		
	$\frac{1}{2} + \frac{1}{2}$ mark		
Effect on depletion layer	½ mark		
Effect on Potential barrier	½ mark		
·	*	1/2	
charges in n- region set up a potential differen	ce across the junction,	1/2	
In forward bias (a) width of depletion layer de	ecreases	1/2	
(b) value of potential decreases		1/2	2
SECTION (C		
a) Internal resistance	1 ½ mark		
b) Voltage across R	1 ½ mark		
$\mathbb{E}_{A \mid I \mid I_{1} \mid I_{2} $	°C		
$I_1 = \frac{E_1 - V}{r_1}$ Current drawn from cell -2 $I_2 = \frac{E_2 - V}{r_2}$ Resultant current $I = I_1 + I_2$		1/2	
On solving $ \therefore I = \frac{E_1 r_2 + E_2 r_1}{r_1 r_2} - V \left(\frac{r_2 - r_1}{r_1} \right) $	$\frac{r_1}{r_2}$		
$\therefore V = \frac{E_1 r_2 + E_2 r_1}{r_1 r_2} - I\left(\frac{r_1}{r_2}\right)$	$\left(\frac{r_2}{r_1}\right)$		
$V = E_{eq} - Ir_{eq}$ $E_{eq} = \frac{E_1 r_2 + E_2 r_1}{E_1 r_2 + E_2 r_2}$		1/2	
		1/2	
	Effect on depletion layer Effect on Potential barrier The small region in the vicinity of the junctio free charge carrier and has only immobile in region/ layer. The accumulation of negative charges in p charges in n- region set up a potential different which acts as a barrier and is called barrier point in forward bias (a) width of depletion layer do (b) value of potential decreases SECTION (a) a) Internal resistance b) Voltage across R (a) $I_1 = \frac{E_1 - V}{r_1}$ Current drawn from cell -1 $I_2 = \frac{E_2 - V}{r_2}$ Resultant current $I = I_1 + I_2$ On solving $\therefore I = \frac{E_1 r_2 + E_2 r_1}{r_1 r_2} - V\left(\frac{r_2 - r_1}{r_2}\right)$ $\therefore V = \frac{E_1 r_2 + E_2 r_1}{r_1 r_2} - I\left(\frac{r_1}{r_2}\right)$	Effect on depletion layer Effect on Potential barrier Effect on Potential barrier The small region in the vicinity of the junction which is depleted of free charge carrier and has only immobile ions is called depletion region/ layer. The accumulation of negative charges in p - region and positive charges in n- region set up a potential difference across the junction, which acts as a barrier and is called barrier potential. In forward bias (a) width of depletion layer decreases (b) value of potential decreases SECTION C a) Internal resistance b) Voltage across R	Effect on depletion layer Effect on Potential barrier The small region in the vicinity of the junction which is depleted of free charge carrier and has only immobile ions is called depletion region/ layer. The accumulation of negative charges in p - region and positive charges in n- region set up a potential difference across the junction, which acts as a barrier and is called barrier potential. In forward bias (a) width of depletion layer decreases (b) value of potential decreases SECTION C SECTION C a) Internal resistance

Page **8** of **18**


	$r_{eff} = \frac{r_1 r_2}{r_1 + r_2} = \frac{2 \times 2}{2 + 2} = 1\Omega$	1/2	
	Current through R $I = \frac{E_{effect}}{R + r_{eff}} = \frac{5}{10 + 1} = \frac{5}{11}A$	1/2	
	P.D across R $= \frac{5}{11} \times 10 = 4.54 \text{ volt}$	1/2	3
29	a) Writing expression for magnetic moment $\frac{1}{2}$ mark b) Figure $\frac{1}{2}$ mark Magnetic field and calculation $\frac{1}{2}$ mark (a) magnetic moment = $\frac{1}{2}$ M= NIA $\frac{1}{2}$ M= NI $\frac{1}{2}$	1/2	
	$d\mathbf{B}_{\mathbf{R}}$ $\mathbf{d}\mathbf{B}_{\mathbf{A}}$ $\mathbf{d}\mathbf{B}_{\mathbf{A}}$ $\mathbf{d}\mathbf{B}_{\mathbf{A}}$ $\mathbf{d}\mathbf{B}_{\mathbf{A}}$ $\mathbf{d}\mathbf{B}_{\mathbf{A}}$	1/2	
	According to Biot-sevart law $\overrightarrow{dB} = \frac{\mu_0 I}{4\pi} \frac{ \overrightarrow{dl} \times \overrightarrow{r} }{r^3}$ $dB = \frac{\mu_0 I}{4\pi} \frac{dl}{r^2}$ $dB_\perp components due to diametrically opposite components cancel out. Only dB_x components refrain$	1/2	
	$dB_{x}=rac{\mu_{0}Idl}{4\pi r^{2}}.cos heta$ $B=\int dB_{x}$	1/2	
	$B = \frac{\mu_0 I R^2}{2(R^2 + x^2)^{3/2}} \ (along \ x \ axis)$	1	3

	OR			
	a) Definition and expression	1 mark	7	
	b) Conversion of Galvanometer			
	(i) into ammeter	1 mark		
	(ii) Effective resistance	1 mark		
	a) Deflection per unit current		1/2	
	$I_s = \frac{\theta}{I} = \frac{BNA}{K}$		1/2	
	b) (i) By connecting a low resistance (R _s) in galvanometer such that	parallel to	1/2	
	$(I_0 - I_g)R_s = I_gG$		1/2	
	(ii) effective resistance $\frac{1}{R_A} = \frac{1}{R_S} + \frac{1}{G} = \frac{G + R_S}{R_S G}$	<u>s</u>		
	$\therefore R_A = \frac{R_S G}{G + R_S}$		1	3
30	(a) Peak value of current and phasor	1 mark	\neg	
	Potential across R	½ mark		
	Potential across C	½ mark		
	(b) Phase difference	½ mark		
	Identification	½ mark		
	$\varepsilon \bigcirc \qquad \qquad C$			
	VR V φ ωt V _c		1/2	


	T	Т	
	Peak value of current $I_0 = \frac{V_0}{Z} = \frac{V_0}{\sqrt{X_c^2 + R^2}}$	1/2	
	$X_c = \frac{1}{\omega C}$		
	(i) $V_R = I_0 R = \frac{V_0 R}{\sqrt{X_c^2 + R^2}}$	1/2	
	$(ii) V_c = I_0 X_c = \left(\frac{V_0}{\sqrt{X_c^2 + R^3}}\right) X_c$	1/2	
	(b) From phasor X_c	1/2	
	$tan\phi = \frac{X_c}{R}$ Current leads the applied voltage by phase ϕ	1/2	3
31	Current leads the applied voltage by phase ϕ	/ 2	<i>J</i>
	a) Dependence on distance D from slit 1 mark		
	b) Dependence on slit separation d 1 mark		
	c) Dependence on distance between source and slit 1 mark		
	(a) Fringe width increases, $\beta \propto D$	47	
	(b) Fringe width decreases, $\beta \propto \frac{1}{d}$	$\frac{1}{2} + \frac{1}{2}$ $\frac{1}{2} + \frac{1}{2}$	
	(c) Fringes disappear because $\frac{s}{s} < \frac{\lambda}{d}$ not satisfied	$\frac{1}{2} + \frac{1}{2}$	3
32	(a) Speed of light in material medium 1 mark		
	(b) (i) Identification and Range ½ + ½ mark		
	(ii) Identification and Range ½ + ½ mark		
	(a) Speed of light in medium		
	$v = \frac{1}{\sqrt{\mu \epsilon}} = \frac{1}{\sqrt{\mu_0 \mu_r \epsilon_0 \epsilon_r}}$	1	
	(b) (i) Microwave range $0.1 \text{mt} - 1 \text{mm}$ $(10^{-3} \text{m} - 10^{-1} \text{m})$	1/2 +1/2	
	(ii) Infrared waves range $1 mm - 700nm$	1/2 + 1/2	3
33	KE of α particle 1 mark		
	Calculation 2 marks		
	KE of α particle $E_{k\alpha} = (m_y - m_x - m_\alpha)c^2$	1/2	
	$= m_{y}c^{2} - m_{x}c^{2} - m_{\alpha}c^{2}$	1/2 1/2	
	$= (235 \times 7.8 - 231 \times 7.835 - 4 \times 7.07) \text{ MeV}$ $= 1833 - 1809.885 - 28.28$	1/2	
	= 1833 - 1805.863 - 26.26 $= 1833 - 1838.165 = -5.165 MeV$	1	3

Page 11 of 18

	(a) Circuit diagram 1 mark		
	Working of Zener diode as DC voltage regulator 1 mark		
	V-I graph ½ mark		
	(b) Reason of heavy doping ½ mark		
(a)			
	Unregulated voltage (V_i) I_L Regulated voltage R_L (V_s)	1	
di wi be	the input voltage increases, the current through R_s and Zener ode also increases. This increases the voltage drop across R_s thout any changes in the voltage across the Zener diode. This is cause in the breakdown region, Zener voltage remains constant en though the current through that Zener diode changes.	1	
	(a) I (mA)		
	Reverse bias V_z Forward bias $V(V)$	1/2	
	To decrease the width of depletion region which increases ectric field at the junction.	1/2	
	SECTION D		
	(a) (i) Electric Field inside hollow sphere 1½ mark		
	(ii) Electric Field outside hollow sphere 1½ mark		
	(b) (i) The net outward flux through cylinder 1 mark		
			1

	OR		
	a) Expression for potential energy 3 marks		
	b) Equipotential surface due to isolated -ve charge		
	1 mark		
	c) Work done in assembling the charge 1 mark		
(a)	Work done in bringing q from infinity against the field $E = q_1 V \vec{r_1} $	1	
	ork done on q_2 against the field $E = q_2 V \overrightarrow{r_2} $ ork done on q_2 against the field due to q_1		
	$=\frac{q_1q_2}{4\pi\epsilon_0(r_{12})}$	1	
	tential energy of the system= Total work done in assembling the stem	1/2	
٠, ر	$= q_1 V(\overrightarrow{r_1}) + q_2 V(\overrightarrow{r_2}) + \frac{q_1 q_2}{4\pi \epsilon_0 r_{12}}$	1/2	
b)	Equipolish	1	
c)	Work done= charge in potential energy		
	$=\frac{kq_1q_2}{r_{12}}+\frac{kq_1q_3}{r_{13}}+\frac{kq_2q_{31}}{r_{23}}$	1/2	
	$= \frac{9 \times 10^{9} \times 10^{-12}}{0.1} [1 \times -1 + -1 \times 2 + 1 \times 2]$ $= 9 \times 10^{-2} [-1 - 2 + 2]$ $= -9 \times 10^{-2} J$	1/2	5
1			

1

[Note: Diagram with different windings can also be drawn] When an alternating voltage is applied to the primary, the resulting current produces an alternating magnetic flux which links the secondary and induces an emf

Induced emf across primary coil

$$e_P = -N_p \frac{d\emptyset}{dt}$$

1/2

Induced emf across secondary coil

$$e_{s} = -N_{s} \frac{d\emptyset}{dt}$$

$$\frac{e_s}{e_p} = \frac{N_s}{N_p} = r$$

1/2

(i) to minimise the eddy currents

(ii) To reduce the heat loss

1/₂
1/₂

(b)

(i)

F=BII

$$I = \frac{E}{R} = \frac{Bvl}{R}$$

$$F = \frac{B^2vl^2}{R}$$

$$= \frac{0.4 \times 0.4 \times 0.1 \times 0.2 \times 0.2}{0.1}$$

$$= 6.4 \times 10^{-3} \text{ N}$$

1/2

1/2

$$P = F.v = 6.4 \times 10^{-3} \times 0.1$$
$$= .64 \times 10^{-3} W$$

1/2 1/2

5

a) Labelled diagram	2 marks	
Figure		
Expression for resolving power	1 mark	
b) Calculation of angular magnification	1 mark	
Diameter of image formed by objective	re lens	
	1 mark	
a) Objective $f_{\overline{o}}$ Eyepie $f_{\overline{e}}$ $f_{\overline{e}}$ $f_{\overline{e}}$ $f_{\overline{e}}$ $f_{\overline{e}}$ $f_{\overline{e}}$	De Contraction de Con	2
Resolving power of telescope = $\frac{D}{1.22\lambda}$		1
b) (i) Angular magnification $m = \frac{\beta}{\alpha} = \frac{f_0}{f_e} = \frac{1}{1}$	$\frac{20m}{0^{-2}m} = 2000$	1
(ii) $\frac{D}{d} = \frac{x}{f_o}$ $d = \frac{Df_0}{x} = \frac{3.5 \times 10^6 \times 20}{3.8 \times 10^8} = \frac{3.5 \times 10^8}{3.8 \times 10^8} = \frac{1}{3.8 \times 10^8}$		1/2
$d = \frac{Df_0}{x} = \frac{3.5 \times 10^8 \times 20}{3.8 \times 10^8} =$	= .18m	1/2
OR		
(a) Labelled diagram	1 mark	
Derivation of mirror relation	2 marks	
(b) Position of image	1 ½ marks	
Nature of image	1 ½ marks	
C F B P	A' B'	1
$\frac{A'B'}{AB} = \frac{PB'}{PB}$	1	1/2
Also $\Delta A'B'F \sim MNP$ (for small of		1

$\therefore \frac{A'B'}{MP} = \frac{B'F}{PF}$		
$\frac{A'B'}{AB} = \frac{B'F}{PF} 2$		
From 1 and 2 $\frac{PB'}{PB} = \frac{B'F}{PF} 3$	1/2	
$\frac{PB'}{PB} = \frac{B'P + PF}{PF} 4$ $PB = -u \qquad PB' = v \qquad PF = -f$	1/2	
$\frac{v}{-u} = \frac{v - f}{-f}$ $-vf = -vu + uf$ $\frac{1}{f} = \frac{1}{v} + \frac{1}{u}$ (b) According to lens maker's formula	1/2	
$\frac{1}{f} = (\mu - 1) \left(\frac{1}{R_1} - \frac{1}{R_2} \right)$ for plano convex lens $R_1 \rightarrow R$ and $R_2 \rightarrow \infty$	1/2	
$\frac{1}{f} = \frac{(\mu - 1)}{R} = \frac{1.5 - 1}{20}$	1/2	
∴f=40 cm $ \frac{1}{f} = \frac{1}{v} - \frac{1}{u} $ $ \frac{1}{40} = \frac{1}{v} - \frac{1}{-30} $		
v = -12 cm Nature: virtual	1/ ₂ 1/ ₂	5