PHYSICS MARKING SCHEME

Q.NO.	PHYSICS MARKING SCHEME Expected Answer/Value Points	Marks	Total Marks
1	Electron (No explanation need to be given. If a student only writes the formula for frequency of charged particle (or $v_c \alpha \frac{q}{m}$) award ¹ / ₂ mark)	1	1
2	 (a) Ultra violet rays (b) Ultra violet rays / Laser 	1/2 1/2	1
3	Photoelectric Current I	1/2	
	Applied voltage → The graph I ₂ corresponds to radiation of higher intensity [Note: Deduct this ½ mark if the student does not show the two graphs starting from the same point.] (Also accept if the student just puts some indicative marks, or words, (like tick, cross, higher intensity) on the graph itself.	1/2	1
4	Daughter nucleus	1	1
5	Sky wave propagation	1	1
	(SECTION – B)		
6	Formula½ markStating that currents are equal½ markRatio of powers1mark		
	Power = $I^2 R$ The current, in the two bulbs, is the same as they are connected in series. $\therefore \frac{P_1}{P_2} = \frac{I^2 R_1}{I^2 R_2} = \frac{R_1}{R_2}$ $= \frac{1}{2}$	$\frac{1/2}{1/2}$ $\frac{1}{2}$ $\frac{1}{2}$	2
7	Writing the equation1 markFinding the current1 mark		
	By Kirchoff's law, we have, for the loop ABCD, +200 - $38i-10 = 0$	1	

			55/1
	$\therefore i = \frac{190}{38} \text{A} = 5\text{A}$	1	2
	$\begin{array}{c} 10 \text{ V} \\ A \\ B \\ B \\ 200 \text{ V} \\ \end{array} \begin{array}{c} 10 \text{ V} \\ D \\ C \\ 38 \Omega \\ \end{array} \begin{array}{c} C \\ C \\ C \\ \end{array}$		
	Alternatively:		
	Finding the Net emf 1 mark		
	Stating that $I = \frac{V}{R}$ ¹ / ₂ mark		
	Calculating I ¹ / ₂ mark		
	The two cells being in 'opposition', :.net $\operatorname{emf} = (200 - 10)V = 190 V$ Now $I = \frac{V}{R}$ $\therefore I = \frac{190 V}{38 \Omega} = 5 A$ [Note: Some students may use the formulae $\frac{\varepsilon}{r} = \frac{\varepsilon_1}{r_1} + \frac{\varepsilon_2}{r_2}$, and $r = \frac{(r_1 r_2)}{(r_1 + r_2)}$	1 1/2 1/2	2
	For two cells connected in parallel They may then say that $r = 0$; ε is indeterminate and hence I is also indeterminate Award full marks(2) to students giving this line of reasoning.] OR		
	Stating the formula 1mark		
	Calculating r 1mark		
	We have $r = \left(\frac{l_1}{l_2} - 1\right) R = \left(\frac{l_1 - l_2}{l_2}\right) R$	1	
	$\therefore r = \left(\frac{350 - 300}{300}\right) \times 9\Omega$	1/2 1/2	`
8	$=\frac{50}{300} \times 9\Omega = 1.5\Omega$	7/2	2
	a) Reason for calling IF rays as heat rays1 markb) Explanation for transport of momentum1 mark		
	 a) Infrared rays are readily absorbed by the (water) molecules most of the substances and hence increases their thermal m (If the student just writes that "infrared ray produce heating eff award ½ mark only) 	notion. 1	

			55/1
	 b) Electromagnetic waves can set (and sustain) charges in motion. Hence, they are said to transport momentum. (Also accept the following: Electromagnetic waves are known to exert 'radiation pressure'. This pressure is due to the force associated with rate of change of momentum. Hence, EM waves transport momentum) 	1	2
9	Calculating the energy of the incident photon1 markIdentifying the metals1/2 markReason1/2 mark		
	The energy of a photon of incident radiation is given by $E = \frac{hc}{\lambda}$ $\therefore E = \frac{6.63 \times 10^{-34} \times 3 \times 10^{8}}{(412.5 \times 10^{-9}) \times (1.6 \times 10^{-19})} \text{eV}$	1/2	
	$(412.5 \times 10^{-9}) \times (1.6 \times 10^{-19})^{\circ}$ $\approx 3.01 \text{eV}$ Hence, only Na and K will show photoelectric emission [Note: Award this ½ mark even if the student writes the name of only one of these metals]	1/2 1/2	
	<u>Reason:</u> The energy of the incident photon is more than the work function of only these two metals.	1/2	2
10	Formula for modulation index1 markFinding the peak value of the modulating signal1 mark		
	We have $\mu = \frac{A_m}{A_c}$ Here $\mu = 60\% = \frac{3}{5}$ $\therefore A_m = \mu A_c = \frac{3}{5} \times 15V$	1	
	Here $\mu = 60\% = \frac{3}{5}$	1/2	
	= 9V	1/2	2
11	Section Ca) Finding the resultant force on a charge Q2 marksb) Potential Energy of the system1 mark		
	a) Let us find the force on the charge Q at the point C Force due to the other charge Q $F_1 = \frac{1}{4\pi\epsilon_o} \frac{Q^2}{(a\sqrt{2})^2} = \frac{1}{4\pi\epsilon_o} \left(\frac{Q^2}{2a^2}\right) (along AC)$ Force due to the charge q (at B), F_2 $= \frac{1}{4\pi\epsilon_o} \frac{qQ}{a^2} along BC$	1⁄2	
	$=\frac{1}{4\pi\epsilon_{o}}\frac{qQ}{a^{2}} \text{ along BC}$ Force due to the charge q (at D), F_{3} $=\frac{1}{4\pi\epsilon_{o}}\frac{qQ}{a^{2}} \text{ along DC}$ Force F_{2}	1/2	

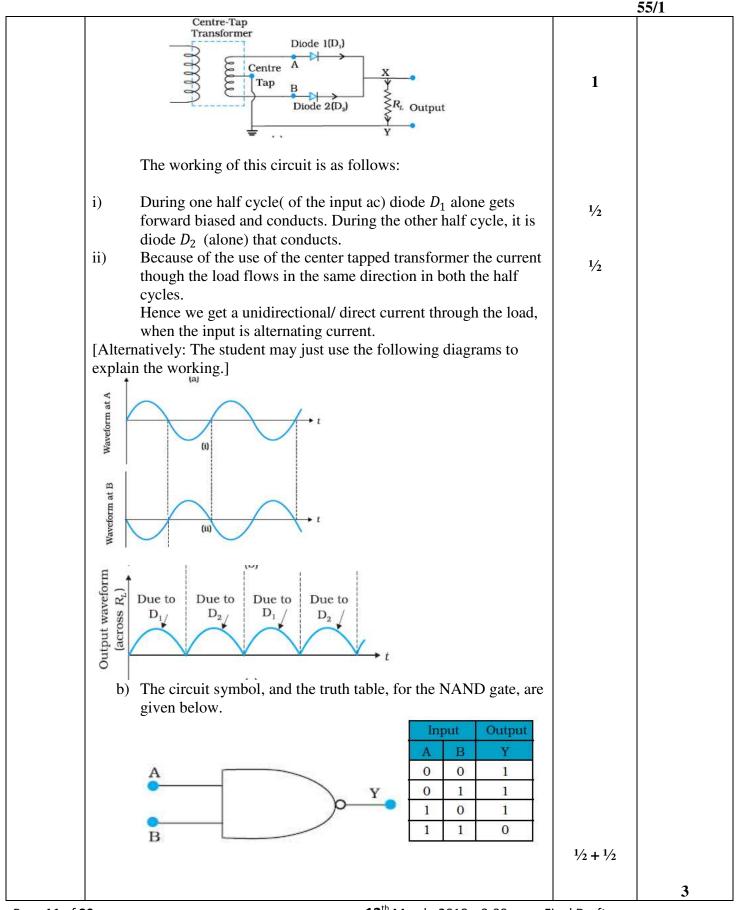
		55/1
Resultant of these two equal forces		
$F_{23} = \frac{1}{4\pi\epsilon_o} \frac{qQ(\sqrt{2})}{a^2} \text{ (along AC)}$	1/2	
\therefore Net force on charge Q (at point C)	, 2	
$F = F_1 + F_{23} = \frac{1}{4\pi\epsilon_0} \frac{Q}{a^2} \left[\frac{Q}{2} + \sqrt{2}q \right]$		
0 – –	1/2	
This force is directed along AC		
(For the charge Q, at the point A, the force will have the same magnitude but will be directed along CA)		
[Note : Don't deduct marks if the student does not write the direction		
of the net force, F]		
b) Potential energy of the system		
$1 [a0 a^2 0^2]$		
$=\frac{1}{4\pi\epsilon_{0}}\left 4\frac{q_{0}}{a}+\frac{q}{q_{1}/2}+\frac{q}{q_{2}/2}\right $	1/2	
$= \frac{1}{4\pi\epsilon_0} \left[4\frac{qQ}{a} + \frac{q^2}{a\sqrt{2}} + \frac{Q^2}{a\sqrt{2}} \right] \\= \frac{1}{4\pi\epsilon_0 a} \left[4qQ + \frac{q^2}{\sqrt{2}} + \frac{Q^2}{\sqrt{2}} \right]$	17	
$=\frac{1}{4\pi\epsilon_0 a}\left[4qQ+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}\right]$	1/2	3
OR		
a) Finding the magnitude of the resultant force on charge q 2 marks		
b) Finding the work done 1 mark		
a) Force on charge q due to the charge - $4q$		
$F_1 = \frac{1}{4\pi\epsilon_0} \left(\frac{4q^2}{l^2}\right)$, along AB	1/2	
Force on the charge q , due to the charge	72	
2q		
$F_2 = \frac{1}{4\pi\epsilon_0} \left(\frac{2q^2}{l^2}\right)$, along CA		
The forces F_1 and F_2 are inclined to each		
other at an angle of 120° -4γ		
Hence, resultant electric force on charge q		
$F = \sqrt{F_1^2 + F_2^2 + 2F_1F_2\cos\theta}$	1/2	
$= \sqrt[N]{F_1^2 + F_2^2 + 2F_1F_2cos120^0}$		
$= \sqrt{F_1^2 + F_2^2 - F_1F_2}$	1/2	
$= \left(\frac{1}{4\pi\epsilon_0} \frac{q^2}{l^2}\right) \sqrt{16+4-8}$		
$=\frac{1}{4\pi\epsilon_0}\left(\frac{2\sqrt{3}q^2}{l^2}\right)$	1/2	
(b) Net P.E. of the system		

Page **4** of **20**

			55/1
	$= \frac{1}{4\pi\epsilon_0} \cdot \frac{q^2}{l} [-4 + 2 - 8]$ $= \frac{(-10)}{4\pi\epsilon_0} \frac{q^2}{l}$ $\therefore \text{ Work done} = \frac{10 q^2}{4\pi\epsilon_0 l} = \frac{5q^2}{2\pi\epsilon_0 l}$	1/2 1/2	3
	$\therefore \text{ Work done} = \frac{10 q^2}{4\pi\epsilon_0 l} = \frac{5q^2}{2\pi\epsilon_0 l}$		
12	 a) Definition and SI unit of conductivity 1/2 + 1/2 marks b) Derivation of the expression for conductivity 1 1/2 marks Relation between current density and electric field 1/2 mark a) The conductivity of a material equals the reciprocal of the resistance of its wire of unit length and unit area of cross section. [Alternatively: The conductivity (σ) of a material is the reciprocal of its resistivity 	1/2	
	(ρ)] (Also accept $\sigma = \frac{1}{\rho}$) Its SI unit is $\left(\frac{1}{ohm-metre}\right)/ohm^{-1}m^{-1}/(mho \text{ m}^{-1})/\text{siemen m}^{-1}$ b) The acceleration, $\vec{a} = -\frac{e}{m}\vec{E}$ The average drift velocity, v_d , is given by $v_d = -\frac{eE}{m}\tau$ (τ = average time between collisions/ relaxation time)	1/2 1/2 1/2	
	If <i>n</i> is the number of free electrons per unit volume, the current <i>I</i> is given by $I = neA v_d $ $= \frac{e^2A}{m} \tau n E $ But $I = j A$ (j= current density) We, therefore, get $ j = \frac{ne^2}{m} \tau E $, The term $\frac{ne^2}{m} \tau$ is conductivity. $\therefore \sigma = \frac{ne^2\tau}{m}$	1/2	
12	$\Rightarrow J = \sigma E$	1/2	3
13	 a) Formula and Calculation of work done in the two cases (1+1) marks b) Calculation of torque in case (ii) 1 mark 		
	(a) Work done = $mB(\cos\theta_1 - \cos\theta_2)$ (i) $\theta_1 = 60^0, \theta_2 = 90^0$ \therefore work done = $mB(\cos60^0 - \cos90^0)$ $= mB(\frac{1}{2} - 0) = \frac{1}{2}mB$	1/2	

Page **5** of **20**

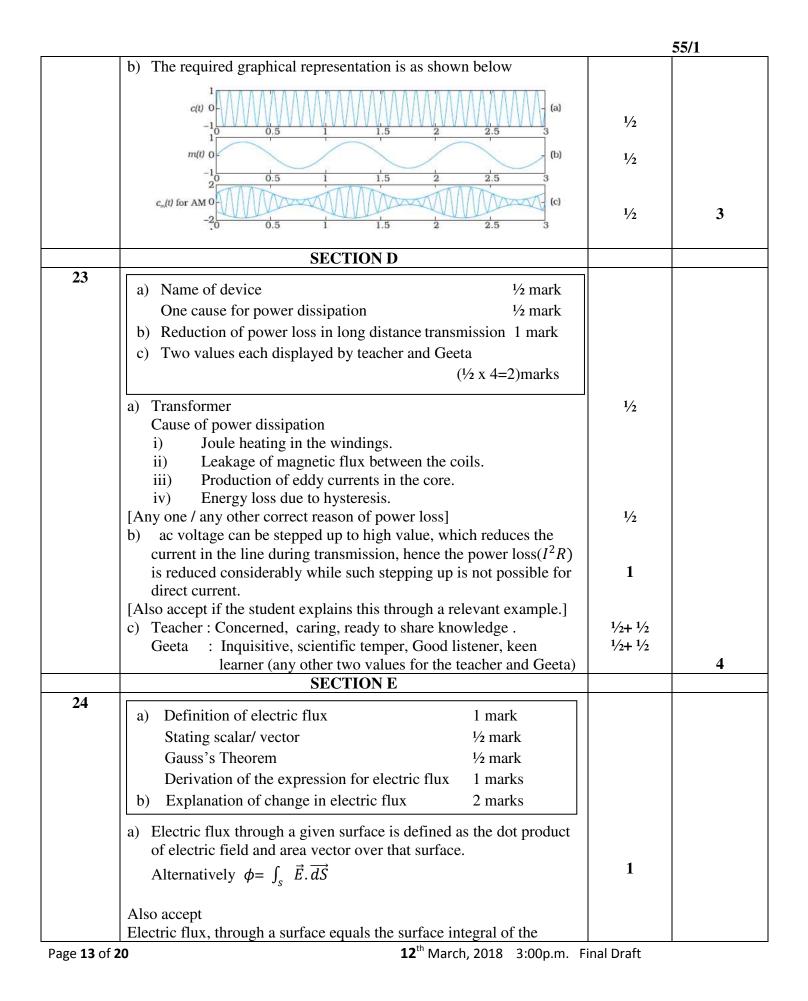
			55/1
	$=\frac{1}{2} \times 6 \times 0.44 \text{ J} = 1.32 \text{ J}$	1/2	
	(ii) $\theta_1 = 60^0, \theta_2 = 180^0$	1/2	
	$\therefore \text{work done} = mB(\cos 60^{\circ} - \cos 180^{\circ})$	72	
	$= mB\left(\frac{1}{2} - (-1)\right) = \frac{3}{2}mB$		
	$=\frac{3}{2} \times 6 \times 0.44 \text{ J} = 3.96 \text{ J}$	1/2	
	[Also accept calculations done through changes in potential energy.]		
	(b)		
	Torque = $ \vec{m} \times \vec{B} = mB \sin\theta$	1/2	
	For $\theta = 180^{\circ}$, we have		
	Torque = $6 \times 0.44 \sin 180^{\circ} = 0$ [If the student straight away writes that the torque is zero since	1/2	
	magnetic moment and magnetic field are anti parallel in this		3
	orientation, award full 1mark]		5
14			
	a) Expression for Ampere's circuital law1/2 markDerivation of magnetic field inside the ring1 mark		
	b) Identification of the material ¹ / ₂ mark		
	Drawing the modification of the field pattern 1 mark		
	a) From Ampere's circuital law, we have,		
	$\oint \vec{B} \cdot d\vec{l} = \mu_o \mu_r I_{enclosed} \tag{i}$	1/2	
	For the field inside the ring, we can write		
	$\oint \vec{B} \cdot d\vec{l} = \oint Bdl = B \cdot 2\pi r$		
	(r = radius of the ring)		
	Also, $I_{enclosed} = (2\pi rn)I$ using equation (i)	1/2	
	$\therefore B. 2\pi r = \mu_0 \mu_r . (n. 2\pi r) I$	1/2	
	$\therefore B = \mu_o \mu_r n I$	/2	
	[Award these $\left(\frac{1}{2} + \frac{1}{2}\right)$ marks even if the result is written without giving		
	the derivation]	1/	
	b) The material is paramagnetic.The field pattern gets modified as shown in the figure below.	1/2	
	The field pattern gets mourried as shown in the figure below.		
		1	
1 =			3
15	a) Diagram ¹ / ₂ mark		
	Polarisation by reflection 1 mark		
	b) Justification 1 mark		
	Writing yes/no ¹ / ₂ mark		
	a) The diagram, showing polarisation by reflection is as shown.		
	[Here the reflected and refracted rays are at right angle to each		
	other.]		
Page 6 of 2	0 12 th March, 2018 3:00p.m. Fir	al Draft	

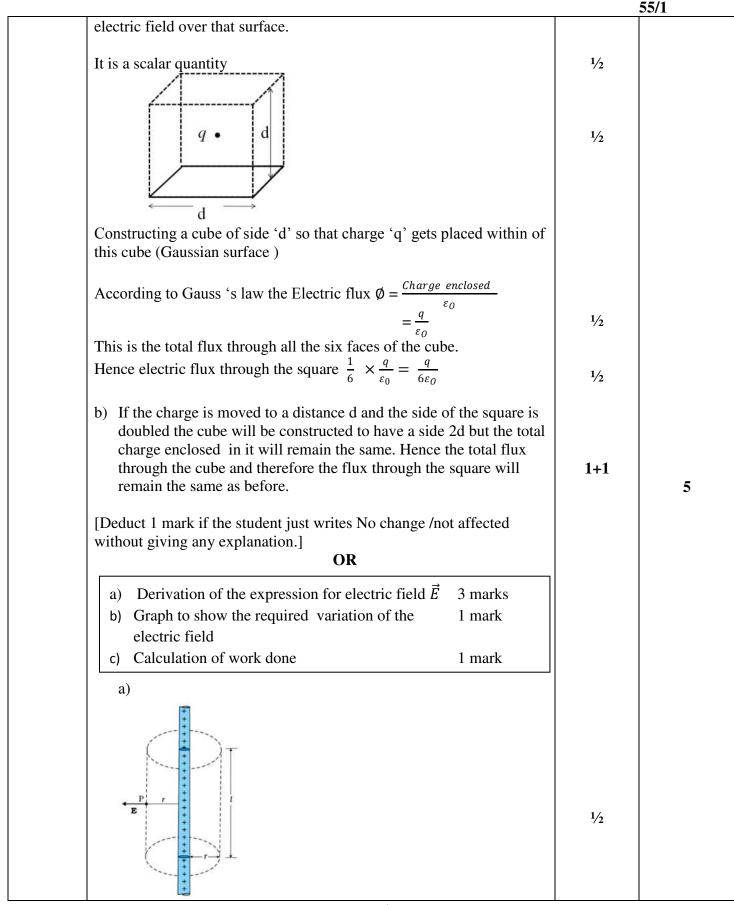

			55/1
	Incident Reflected		
	90° 7 Refracted MEDIUM	1⁄2	
	$\therefore r = \left(\frac{\pi}{2} - i_B\right)$ $\therefore \mu = \left(\frac{\sin i_B}{\sin r} = \tan i_B\right)$	1⁄2	
	 Thus light gets totally polarised by reflection when it is incident at an angle <i>i_B</i>(Brewster's angle), where <i>i_B</i> = tan⁻¹μ b) The angle of incidence, of the ray, on striking the face AC is i= 60⁰(as from figure) 	1⁄2	
	Also, relative refractive index of glass, with respect to the surrounding water, is $\mu_r = \frac{3/2}{4/3} = \frac{9}{8}$		
	Also $\sin i = \sin 60^0 = \frac{\sqrt{3}}{2} = \frac{1.732}{2}$ =0.866 For total internal reflection, the required critical angle, in this case, is given by	1⁄2	
	$\sin i_c = \frac{1}{\mu} = \frac{8}{9} \simeq 0.89$	1/2	
	 ∴ i < i_c Hence the ray would not suffer total internal reflection on striking the face AC [The student may just write the two conditions needed for total internal reflection without analysis of the given case. The student may be awarded (1/2 + 1/2) mark in such a case.] 	1⁄2	3
16	 a) Finding the (modified) ratio of the maximum 2 marks and minimum intensities b) Fringes obtained with white light 1 mark 		
	a) After the introduction of the glass sheet (say, on the second slit), we have $\frac{I_2}{I_1} = 50 \% = \frac{1}{2}$ \therefore Ratio of the amplitudes		
	$= \frac{a_2}{a_1} = \sqrt{\frac{1}{2}} = \frac{1}{\sqrt{2}}$ 13 th March 2018, 2000 m. Fin	1⁄2	

· · · · · ·	<u>^</u>			55/1
He	ence $\frac{I_{max}}{I_{min}} = \left(\frac{a_1 + a_2}{a_1 - a_2}\right)^2$		1/2	
=	$\left(\frac{1+\frac{1}{\sqrt{2}}}{1-\frac{1}{\sqrt{2}}}\right)^2$ $\left(\frac{\sqrt{2}+1}{\sqrt{2}-1}\right)^2$		1⁄2	
=($\left(\frac{\sqrt{2}+1}{\sqrt{2}-1}\right)^2$			
()	<i>-</i> 34)		1/2	
b) Th N eit [Note	ne central fringe remains white. o clear fringe pattern is seen after a few (co her side of the central fringe. : For part (a) of this question,	loured) fringes on	1	
(i) Or (ii)	Just draw the diagram for the Young's dou Just draw the diagram for the Young's dou Just state that the introduction of the glass introduce an additional phase difference an central fringe would shift. I such answers, the student may be awarded	sheet would d the position of the		3
17 for this	s part of this question.]			3
Form	maker's formula nula for 'combination of lenses' ining the expression for μ	¹ ⁄2 mark ¹ ⁄2 mark 2 marks		
needle the re With comb	denote the refractive index of the liquid. We e coincides with the lens itself ; its distance the levant focal length. liquid layer present, the given set up, is equi mation of the given (convex) lens and a con- ve 'liquid lens'.	from the lens, equals valent to a	1⁄2	
	ave $\frac{1}{f} = (\mu - 1) \left(\frac{1}{R_1} - \frac{1}{R_2} \right)$		1/2	
	$= \left(\frac{1}{f_1} + \frac{1}{f_2}\right)$		1/2	
as per	The given data, we then have = $(1.5 - 1) \left(\frac{1}{R} - \frac{1}{(-R)}\right)$		1⁄2	
:	$=\frac{1}{R}$			
	$(\mu_l - 1)\left(-\frac{1}{R}\right) + \frac{1}{y} = \frac{-\mu_l}{y} + \frac{2}{y}$		1/2	
$\therefore \frac{\mu_l}{y}$	$= \frac{2}{y} - \frac{1}{x} = \left(\frac{2x - y}{xy}\right)$ $= \left(\frac{2x - y}{x}\right)$			
$07 \mu_l$	$-\left(\frac{1}{x}\right)$		1/2	3

Page **8** of **20**

			55/1
18	 a) Statement of Bohr's postulate 1 mark Explanation in terms of de Broglie hypothesis 1/2 mark b) Finding the energy in the n = 4 level 1 mark Estimating the frequency of the photon 1/2 mark 		
	 a) Bohr's postulate, for stable orbits, states "The electron, in an atom, revolves around the nucleus only in those orbits for which its angular momentum is an integral multiple of h/2π (h = Planck's constant)," [Also accept mvr = n. h/2π (n = 1,2,3,) As per de Broglie's hypothesis λ = h/p = h/mv For a stable orbit, we must have circumference of the orbit=nλ (n = 1,2,3,) ∴ 2πr = n.mv 	1/2	
	or $mvr = \frac{nh}{2\pi}$	1/2	
	2π Thus de –Broglie showed that formation of stationary pattern for intergral 'n' gives rise to stability of the atom.	1/2	
	This is nothing but the Bohr's postulate b) Energy in the $n = 4$ level $= \frac{-E_o}{4^2} = -\frac{E_o}{16}$ \therefore Energy required to take the electron from the ground state, to the $n = 4$ level $= \left(-\frac{E_o}{16}\right) - (-E_o)$	1⁄2	
	$= \frac{-1+16}{16}$ = $\frac{15}{16}E_o$ = $\frac{15}{16} \times 13.6 \times 1.6 \times 10^{-19}$ J Let the frequency of the photon be v, we have $hv = \frac{15}{16} \times 13.6 \times 1.6 \times 10^{-19}$ $\therefore v = \frac{15 \times 13.6 \times 1.6 \times 10^{-19}}{16 \times 6.63 \times 10^{-34}}$ Hz $\approx 3.1 \times 10^{15}$ Hz	1⁄2	
	$\simeq 3.1 \times 10^{15} \text{Hz}$ (Also accept 3 × 10 ¹⁵ Hz)	1 /	
19		1/2	3
	 a) Drawing the plot 1 mark Explaining the process of Nuclear fission and Nuclear fusion 1/2 + 1/2 marks b) Finding the required time 1 mark 		
	a) The plot of (B.E / nucleon) verses mass number is as shown.		
Dago 0 of 20	13 th March 2019 2:00n m Ein		

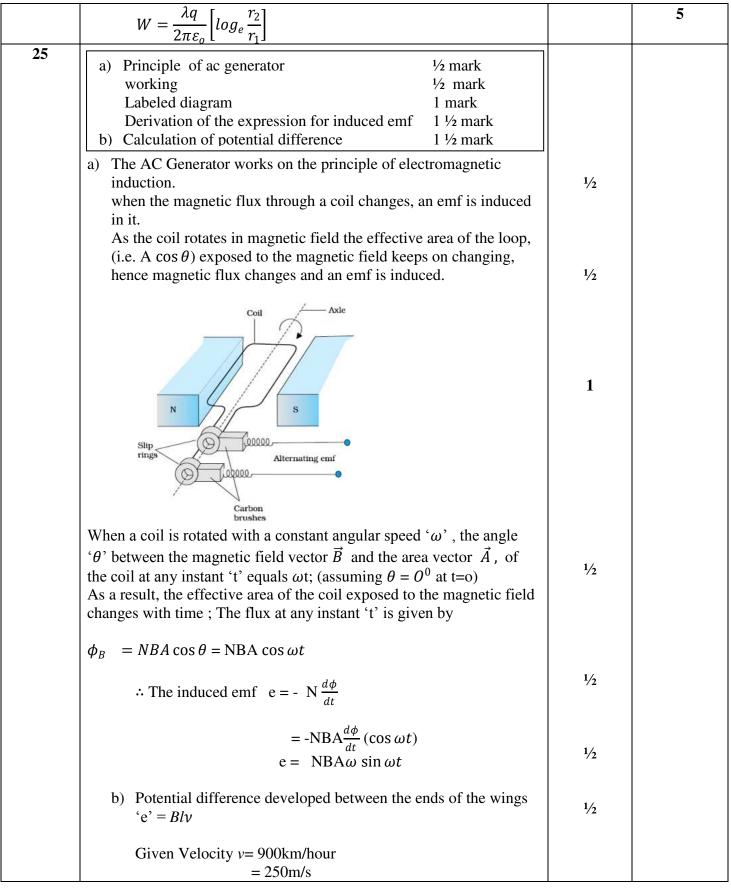

			55/1
	Note : Also accept the diagram that just shows the general shape of	1	
	the graph.] From the plot we note that i) <u>During nuclear fission</u> <u>A heavy nucleus in the larger mass region (A>200) breaks into two</u> middle level nuclei, resulting in an increase in B.E/ nucleon. This results in a release of energy.	1/2	
	 <u>During nuclear fusion</u> Light nuclei in the lower mass region (A<20) fuse to form a nucleus having higher B.E / nucleon. Hence Energy gets released. 	1⁄2	
	[Alternatively: As per the plot: During nuclear fission as well as nuclear fusion, the final value of B.E/ nucleon is more than its initial value. Hence energy gets released in both these processes.] b) We have $3.125\% = \frac{3.125}{100} = \frac{1}{32} = \frac{1}{2^5}$ Half life = 10 years \therefore Required time = 5x 10 years	1⁄2	
20	a) Drawing the labeled circuit diagram 1 mark Explanation of working 1 mark b) Circuit Symbol and 1/2 + 1/2 marks Truth table of NAND gate 1/2 + 1/2 marks	1/2	3
	a) The labeled circuit diagram, for the required circuit is as shown.		

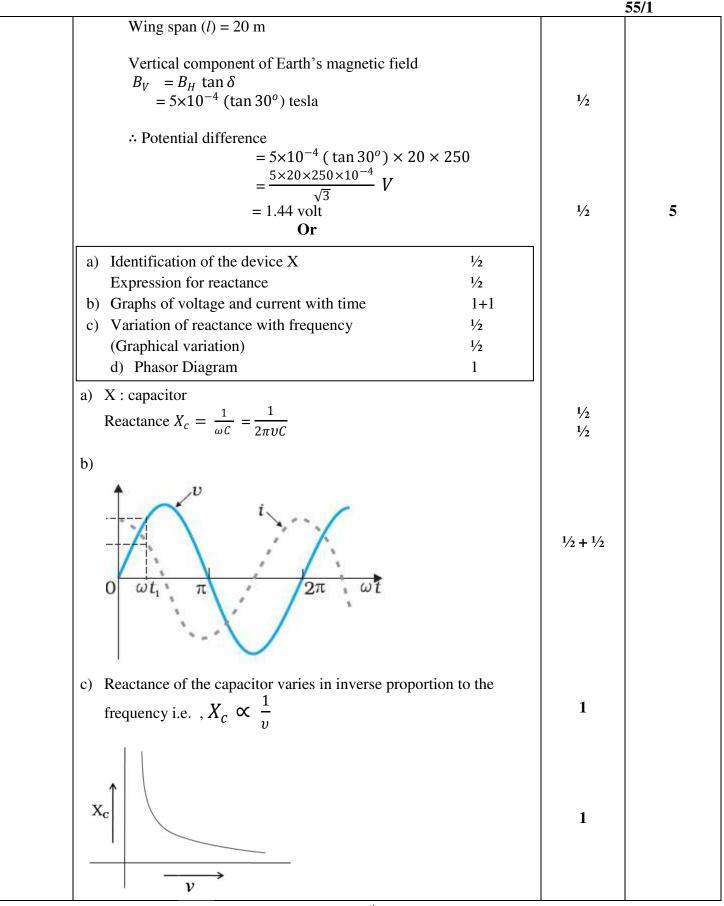


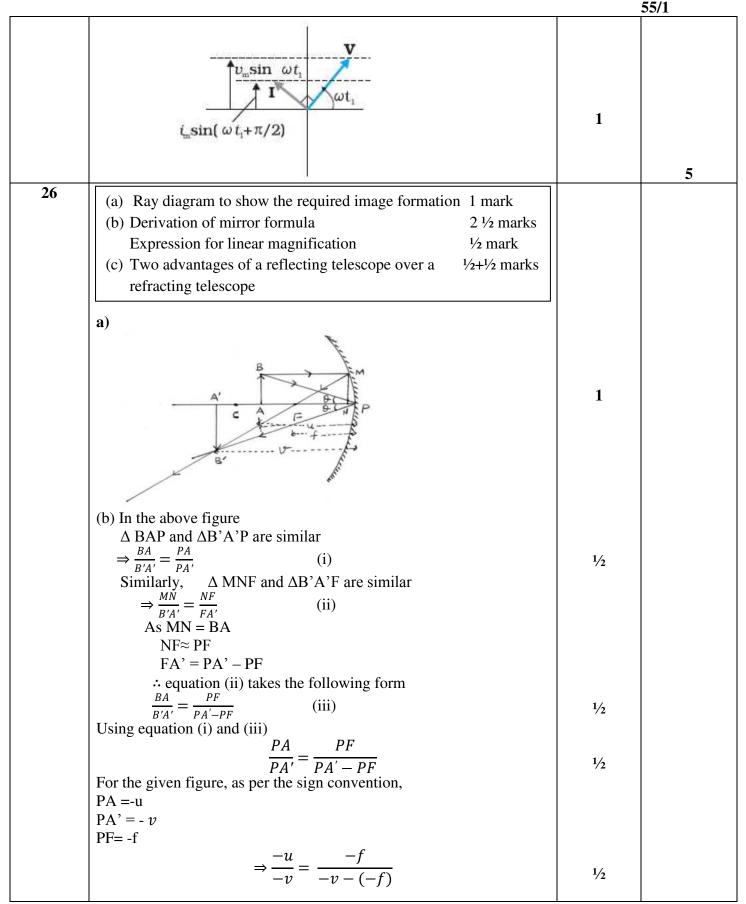
Page **11** of **20**

^{12&}lt;sup>th</sup> March, 2018 3:00p.m. Final Draft

			55/1
21	Input and Output characteristics1+1marksDetermination of a) Input resistance1/2 markb) Current amplification factor1/2 mark		
	The input and output characteristics, of a <i>n-p-n</i> transistor, in its CE configuration, are as shown. $I_n/\mu A$ $100 - K_{ce} = 10.0 V$ $80 - K_{ce} = 10.0 V$	1	
	20 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	1⁄2	
	$\begin{array}{c} & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & \\$	1	
	The relevant values can be read from the input characteristics. Current amplification factor $\beta = \left(\frac{\Delta I_C}{\Delta I_B}\right)$ The relevant values can be read from the output characteristics, corresponding to a given value of <i>V_{CE}</i> .	1⁄2	3
22	 a) Stating the three reasons 1/2 + 1/2 + 1/2 mark b) Graphical representation of the audio signal, carrier wave and the amplitude modulated wave 		
	 a) The required three reasons are : (i) A reasonable length of the transmission antenna. (ii) Increase in effective power radiated by the antenna. (iii)Reduction in the possibility of 'mix-up' of different signals. 		






	55	5/1
To calculate the electric field, imagine a cylindrical Gaussian surface, since the field is everywhere radial, flux through two ends of the cylindrical Gaussian surface is zero.	1/2	
At cylindrical part of the surface electric field \vec{E} is normal to the surface at every point and its magnitude is constant. Therefore flux through the Gaussian surface.		
= Flux through the curved cylindrical part of the surface. = $E \times 2\pi r l$ (i) Applying Gauss's Law	1/2	
Flux $\phi = \frac{q_{enclosed}}{\varepsilon_0}$ Total charge enclosed = Linear charge density × <i>l</i>		
$= \lambda l$ $\therefore \phi = \frac{\lambda L}{\varepsilon_0} \qquad(ii)$	1/2	
Using Equations (i) & ii $E \times 2 \pi rl = \frac{\lambda l}{\varepsilon_o}$		
$E \times 2\pi R = \frac{\lambda}{\varepsilon_o}$ $\Rightarrow E = \frac{\lambda}{2\pi\varepsilon_o r}$	1/2	
In vector notation	1/2	
$\overrightarrow{E} = \frac{\lambda}{2\pi\varepsilon_o r} \ \widehat{n}$		
(where \hat{n} is a unit vector normal to the line charge)		
b) The required graph is as shown: $ \vec{E} $ \uparrow r	1	
a) Work done in moving the charge 'q'. Through a small displacement 'dr' $dW = \vec{F} \cdot \vec{dr}$ $dW = q\vec{E} \cdot \vec{dr}$ $= qEdrcos0$ $dW = q \times \frac{\lambda}{2\pi\varepsilon_0 r} dr$ Work done in moving the given charge from r_1 to $r_2(r_2 > r_1)$ $W = \int_{r_1}^{r_2} dW \int = \int_{r_1}^{r_2} \frac{\lambda q dr}{2\pi\varepsilon_0 r}$ $W = \frac{\lambda q}{2\pi\varepsilon_0} [log_e r_2 - log_e r_1]$	1⁄2	
$w = \frac{1}{2\pi\varepsilon_o} [\iota o g_e r_2 - \iota o g_e r_1]$	1/2	

Page **15** of **20**

55/1

Page **18** of **20**

$\frac{u}{v} = \frac{f}{v - f}$	•	55/1
— —		
· · · · · · · · · · · · · · · · · · ·		
uv –uf =vf Dividing each term by uvf we get		
Dividing each term by uvf, we get $1 1 1$		
$\frac{1}{f} - \frac{1}{n} = \frac{1}{n}$		
$\begin{array}{ccc} j & \nu & u \\ 1 & 1 & 1 \end{array}$		
$\frac{1}{f} - \frac{1}{v} = \frac{1}{u}$ $\Rightarrow \frac{1}{f} = \frac{1}{v} + \frac{1}{u}$	1/2	
j v u		
Linear magnification = - ν/u , (alternatively m = $\frac{h_i}{h_o}$)	1/2	
c) Advantages of reflecting telescope over refracting telescope		
(i) Mechanical support is easier		
(ii) Magnifying power is large		
(iii) Resolving power is large	$\frac{1}{2} + \frac{1}{2}$	
(iv) Spherical aberration is reduced		
(v) Free from chromatic aberration		_
(any two)		5
OR		
(a) Definition of wave front ¹ / ₂ mark		
Verification of laws of reflection 2 marks		
(b) Explanation of the effect on the size and intensity of		
central maxima 1+ 1marks		
(c) Explanation of the bright spot in the shadow of the obstacle		
½ mark		
(a)The wave front may be defined as a surface of constant phase.	1/2	
	72	
(Alternatively: The wave front is the locit of all points that are in the		
(Alternatively: The wave front is the locii of all points that are in the same phase)		
(Alternatively: The wave front is the locit of all points that are in the same phase)		
same phase)		
same phase)		
same phase)		
same phase)	1	
same phase) same phase) Incident Reflected M M Let speed of the wave in the medium be 'v'	1	
same phase) same phase) Incident wavefront Reflected wavefront M M Let speed of the wave in the medium be 'v' Let the time taken by the wave front, to advance from point B to point	1	
same phase) same phase) Incident wavefront Reflected wavefront M Let speed of the wave in the medium be 'v' Let the time taken by the wave front, to advance from point B to point C is ' τ '		
same phase) same phase) Incident wavefront Reflected wavefront M Let speed of the wave in the medium be 'v' Let the time taken by the wave front, to advance from point B to point C is ' τ ' Hence BC = $v \tau$	1	
same phase) Incident wavefront Reflected wavefront M Let speed of the wave in the medium be 'v' Let the time taken by the wave front, to advance from point B to point C is ' τ ' Hence BC = $v \tau$ Let CE represent the reflected wave front		
same phase) Same phase) Incident Wavefront Reflected Wavefront N Let speed of the wave in the medium be 'v' Let the time taken by the wave front, to advance from point B to point C is ' τ ' Hence BC = $v \tau$ Let CE represent the reflected wave front Distance AE = $v \tau = BC$		
same phase) Incident wavefront Reflected wavefront M Let speed of the wave in the medium be 'v' Let the time taken by the wave front, to advance from point B to point C is ' τ ' Hence BC = $v \tau$ Let CE represent the reflected wave front		

	4	55/1
$\Rightarrow \angle i = \angle r$	1/2	
(b) Size of central maxima reduces to half,	1/2	
(:: Size of central maxima = $\frac{2\lambda D}{a}$)	1/2	
Intensity increases.	1/2	
This is because the amount of light, entering the slit, has increased and	1/2	
the area, over which it falls, decreases.		
(Also accept if the student just writes that the intensity becomes four $f_{1}(x)$		
fold) (c) This is because of diffraction of light.	1/2	
[<u>Alternatively:</u>		
Light gets diffracted by the tiny circular obstacle and reaches the		
centre of the shadow of the obstacle.]		
[<u>Alternatively:</u> There is a maxima, at the centre of the obstacle, in the diffraction		
pattern produced by it.]		5