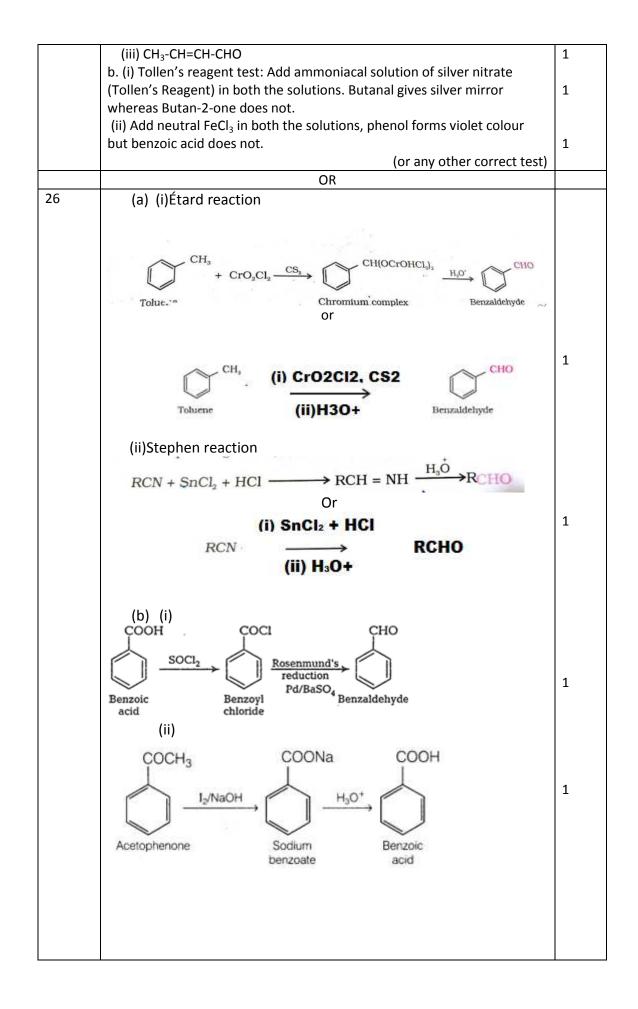
Marking scheme – 2017

CHEMISTRY (043)/ CLASS XII

Outside Delhi set (56/1)


Q No.	Value Points	Marks
1.	H ₃ PO ₄	1
2.	2-Bromo-3-methylbut-2-en-1-ol	1
3.	a. Decreases	1/2
5.	b. No effect	1/2
4.		1
4.	X	
5.	Gel e.g. cheese, butter, jellies (any one)	$\frac{1}{2} + \frac{1}{2}$
6.	a. p-cresol < Phenol < p-nitrophenol	1
-	TT I	
	$>C = C < + H - O + H \implies -C + H_2O$	1
	$>C = C < + H - O - H \implies -C - C < + H_2O$	
	b.	
	OR	
6		
	0	1
	H ₃ C	
	a. CH ₃	
	u .	
	b.	
	CL	
		1
	H ₃ C CH ₃	
7.	n= given mass / molar mass = 8.1 / 27 mol	1/2
		1/2
	Number of atoms= $\frac{8.1}{27} \times 6.022 \times 10^{23}$	
	Number of atoms in one unit cell= 4 (fcc)	1/
	Number of unit cells = $\left[\frac{8.1}{27} \times 6.022 \times 10^{23}\right] / 4$	1/2
	$= 4.5 \times 10^{22}$	1/2
	Or 07 () 0 000 (0 ²³)	1/
	27g of Al contains= 6.022×10^{23} atoms 8.1g of Al contains =(6.022×10^{23} / 27) x 8.1	1/2
	No of unit cells = total no of atoms $/4$	1/2
		1/
	$=\left[\frac{8.1}{27} \times 6.022 \times 10^{23}\right] / 4$	1/2
	$=4.5 \times 10^{22}$	1/2

8.			1,1	
		H		
		9		
	18	CI		
	но	0		
	a.)	b.)		
9.	Mercury cell		1	
	Anode : $Zn(Hg) + 2OH \rightarrow ZnO(s) + H_2O$		1/2	
10.	Cathode : HgO + H ₂ O + 2e \rightarrow Hg(I) + 2 (i) Na[Au(CN) ₂]	20H	½ 1	
10.	(ii) $[Pt(NH_3)_4Cl(NO_2)]SO_4$		1	
11.	(a) Covalent solid / network solid , n	nolecular solid	- 1/2 + 1/2	
	(b) $ZnO \xrightarrow{Heating} Zn^{2+} + 1/2 O_2 + 2e^{-}$			
		erstitial sites and the electrons move	1	
	to neighbouring voids		1	
	(c) Compounds prepared by combin like semiconductors. For eg ZnS, CdS		1/2 + 1/2	
12.		, cuse, ngre (Any one)		
	(a) $\Delta G^0 = -nFE^0_{cell}$		1/2	
	n= 2			
	$\Delta G^0 = -2 \times 96500 \text{ C/mol} \times 0.236 \text{ V}$		1/2	
	= -45.548 J/mol = -45.548 kJ/mol	= - 45548 J/mol		
	= +5.5+6 kg/mor			
	(b) $Q = It = 0.5 \times 2 \times 60 \times 60$		1/2	
	= 3600 C			
	96500 C = 6.023×10^{23} electrons 3600 C = 2.25×10^{22} electrons		1	
13.	(a) Linkage isomerism		1	
		sence of Cl ⁻ , a weak field ligand		
	no pairing occurs whereas in $[Ni(CN)_4]^{2^-}$, CN^- is a strong			
	field ligand and pairing takes place / diagrammatic			
	representation			
	(c) Because of very low CFSE which is not able to pair up the			
	electrons.			
14.	(2)			
	(a) Multimolecular colloid	Associated colloid		
	(a) Aggregation of large	(a) Aggregation of large	1	
	number of small atoms or	number of ions in		
	molecules.	concentrated solutions.		
	(b)			
	Coagulation	Peptization		
	(a) Settling down of colloidal	(a) Conversion of precipitate		
			1	
	particles.	into colloidal sol by adding small amount of	1 ×	

		electrolyte.	
		·	
	(c)		
	Homogenous catalysis	Heterogeneous catalysis (a) Reactants and catalyst	
	(a) Reactants and catalyst are in same phase.	are in different phases.	1
		are in different phases.	-
		DR	
14	(a) Dispersed phase-liquid , D		1
		on / both increase with increase in	4
	surface area (or any other co	prrect similarity)	1
		\rightarrow Fe(OH) ₃ (sol)+3HCl	
15.	$t = \frac{2.30}{2.30}$	$\frac{13}{-\log \frac{[A]o}{[A]}}$	1/2
	k k		
		2 202 100	
	20 min =	$\frac{2.303}{k} \log \frac{100}{75}$ - (i)	1/2
			/-
	$t = \frac{2.30}{2}$	$\frac{100}{25} -(ii)$	
	k k		1/2
	Divide (i) equa	tion by (ii)	
	Divide (i) equa	tion by (ii)	
	20 _ 2.303	log ¹⁰⁰	
	$\frac{20}{t} = \frac{2.303}{k} \log \frac{100}{75}$		1/2
	2.303	$\frac{100}{25}$	
	$=\log 4$		
	20/ t = 0.1250/ 0.6021		
	t= 96.3 min		1
		(or any other correct procedure)	
16.	(i) 1- Bromopentane		1
	(ii) 2-Bromopentane		1
17	(iii) 2-Bromo-2-methylbutan		1
17.	(a) Zone Refining – Impurities an solid metal.	e more soluble in the melt than in the	1
		by oils forming froth while gangue	1
	particles are wetted by wate		-
	(c) Different components of a mixture are differently adsorbed on an adsorbent.		1
18.	(a) (A) CH_3CONH_2		1/2
	(B) CH ₃ NH ₂		1/2
	(C) CH ₃ NC		1/2
	NO ₂		
			1/
	(b) (A)		1/2
	NH ₂		
			1/2
	(B)		_, _

(C)	
	1/2
H-N-C-CH ₃	
~	
19. (a) H ₂ N-(CH ₂) ₆ -NH ₂ , HOOC-(CH ₂) ₄ -COOH	1
(b)	1
N N	
NH	
(c) $CH_2=CH-CH=CH_2$, $C_6H_5-CH=CH_2$	1
20. (a) Anionic detergents are sodium salts of sulpho	onated long chain
alcohols or hydrocarbons / alkylbenzene sulp	phonate or
detergents whose anionic part is involved in (
 (b) Limited spectrum antibiotics are effective aga organism or disease. 	-
(c) Antiseptics are the chemicals which either kill	or prevent growth 1
of microbes on living tissues.	
21. (a) Red phosphorous being polymeric is less reaction	
phosphorous which has discrete tetrahedral st (b) They readily accept an electron to attain noble	
(c) Because of higher oxidation state(+5) of nitrog	
22. (i) Due to the resonance, the electron pair of nitroger	n atom gets
delocalised towards carbonyl group / resonating structure (ii) Resource of the effect in methylamine electron does	
(ii)Because of +I effect in methylamine electron dens increases whereas in aniline resonance takes place	and electron
density on nitrogen decreases / resonating structures	
(iii)Due to protonation of aniline / formation of aniliniu	im ion –
23. (i) Concerned , caring, socially alert, leadership (or values)	any other 2 ½ + ½ 1
(ii) Starch	$\frac{1}{\frac{1}{2} + \frac{1}{2}}$
(iii) α -Helix and β -pleated sheets	$\frac{1}{12} + \frac{1}{12}$
 (iv) Vitamin B / B₁ / B₂ / B₆ / C (any two) 24. a. (i) Availability of partially filled d-orbitals / comparate 	ble energies of ns 1
and (n-1) d orbitals	
(ii) Completely filled d-orbitals / absence of unpaired	d electrons cause 1
weak metallic bonding	2.
(iii) Because Mn^{2+} has d^5 as a stable configuration	1 whereas Cr^{3+} is
more stable due to stable t_{2g}^3	both show
b) Similarity-both are stable in +3 oxidation state/ contraction/ irregular electronic configuration (or a	
similarity)	
Difference- actinoids are radioactive and lanthanoi	ds are not /
actinoids show wide range of oxidation states but l	anthanoids don't ¹
(or any other correct difference)	
OR	
24 a. (i) Cr^{3+} , half filled t^{3}_{2g}	$\frac{1}{2} + \frac{1}{2}$
(ii) Mn^{3+} , due to stable d ⁵ configuration in Mr	

$\begin{array}{c c c c c c c c c c c c c c c c c c c $		(iii) Ti ⁴⁺ , No unpaired electrons		1/2 + 1/2
25 a) $\Delta T_r = K_r m$ Here, $m = w_2 \times 1000/M_2 XM_1$ 273.15-263.15 = K, x 10 x1000/342 x90 K_r = 12.3 K kg/mol $\Delta T_r = K_r m$ = 12.3 x 10 x1000/180x90 = 7.6 K T_r = 273.15 - 7.6 = 265.55 K (or any other correct method) 1 b) (i) Number of moles of solute dissolved in per kilo gram of the solvent. (ii) Abnormal molar mass: if the molar mass calculated by using any of the colligative properties to be different than theoretically expected molar mass. 25. (a) $(P_A^0 - P_A)/P_A^0 = (W_B \times M_A)/(M_B \times w_A)$ $\frac{23.8 - P_A}{23.8} = (30 \times 18) / 60 \times 846$ 1 $23.8 - P_A = 23.8 \times [(30 \times 18) / 60 \times 846]$ (b) $\frac{1}{(a) \ 10 \ boxys Raoult's law}$ $over the entire range of concentration. (b) \Delta_{mix} H = 0(c) \Delta_{mix} V = 026. a.(i) OH(i) O$		b. (i) 2MnO₄ + 16H ⁺ +5S ² → 5S + 2		1
$\begin{array}{c c} \begin{array}{c} \begin{array}{c} \operatorname{Here}, \ m = w_{2} 1000/M_{2} \mathrm{XM}_{1} \\ 273.15-269.15 = K_{2}101000/342290 \\ \mathrm{K}_{1} = 12.3 \times 10 \times 1000/180\mathrm{X90} \\ = 7.6\mathrm{K} \\ \mathrm{T}_{1} = 273.15 - 7.6 = 265.55\mathrm{K} \qquad (\text{or any other correct method}) \\ \mathrm{b} (i) \mathrm{Number of moles of solute dissolved in per kilo gram of the solvent.} \\ (ii) \mathrm{Abnormal molar mass:} \ if the molar mass calculated by using any of the colligative properties to be different than theoretically expected molar mass. \\ \hline \begin{array}{c} 0 \\ \mathrm{CR} \\ \end{array} \\ \hline \begin{array}{c} 25. \\ (a) (P_{A}^{0} - P_{A})/P_{A}^{0} = (w_{B} \times M_{A})/(M_{B} \times w_{A}) \\ \frac{23.8 - P_{A}}{23.8} = (30 \times 18)/60\times 846 \\ \end{array} \\ \hline \begin{array}{c} 23.8 - P_{A} = 0.2532 \\ P_{A} = 23.55mmHg \\ \end{array} \\ \hline \begin{array}{c} 0 \\ \mathrm{b} \end{array} \\ \hline \begin{array}{c} 1 \\ \end{array} \\ \hline \begin{array}{c} 1 \\ 1 \\ \end{array} \\ \hline \begin{array}{c} 1 \\ 1 \\ \end{array} \\ \hline \begin{array}{c} 1 \\ 1 \\ \end{array} \\ \hline \begin{array}{c} 0 \\ 0 \\ \end{array} \\ \hline \begin{array}{c} 0 \\ 0 \\ \end{array} \\ \hline \begin{array}{c} 1 \\ 1 \\ \end{array} \\ \hline \begin{array}{c} 0 \\ 0 \\ \end{array} \\ \end{array} \\ \hline \begin{array}{c} 0 \\ 0 \\ \end{array} \\ \end{array} \\ \hline \begin{array}{c} 0 \\ 0 \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} 0 \\ 0 \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} 1 \\ 0 \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} 0 \\ 0 \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} 0 \\ 0 \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} 0 \\ 0 \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} $ \\ \begin{array}{c} 1 \\ 0 \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} 0 \\ 0 \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} 0 \\ 0 \\ \end{array} \\				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	25			1/2
$\Delta T_{i} = K_{i} m$ $= 12.3 \times 10 \times 1000/180\times 90$ $= 7.6 K$ $T_{i} = 273.15 - 7.6 = 265.55 K$ (or any other correct method) 1 1 b) (i) Number of moles of solute dissolved in per kilo gram of the solvent. (ii) Abnormal molar mass: if the molar mass calculated by using any of the colligative properties to be different than theoretically expected molar mass. DR $25.$ (a) $(P_{A}^{0} - P_{A})/P_{A}^{0} = (w_{B} \times M_{A})/(M_{B} \times w_{A})$ $\frac{23.8 - P_{A}}{23.8} = (30 \times 18) / 60 \times 846$ 1 23.8 - $P_{A} = 23.8 \times [(30 \times 18) / 60 \times 846]$ 23.8 - $P_{A} = 23.55 mm Hg$ (b) (b) (c) $\frac{1 \text{ deal solution}}{(a) \text{ It obeys Raoult's law}}$ over the entire range of concentration. (b) $\Delta_{mix} H = 0$ (c) $\Delta_{mix} V = 0$ (c) $\Delta_{mix} V = 0$ (c) $\Delta_{mix} V$ is not equal to 0. (c) $\Delta_{mix} V$, , , , , , , , , , , , , , , , , , , ,		1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		K _f = 12.3 K kg/mol		1/2
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		T _f = 273.15 – 7.6 = 265.55 K	(or any other correct method)	1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		b) (i) Number of moles of solute dissolved	d in per kilo gram of the solvent.	1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				
25. $\begin{array}{c c c c c c c c c c c c c c c c c c c $		colligative properties to be different that	an theoretically expected molar	1
25. (a) $(P_A^0 - P_A)/P_A^0 = (w_B \times M_A)/(M_B \times w_A)$ $\frac{23.8 - P_A}{23.8} = (30 \times 18)/60 \times 846$ $23.8 - P_A = 23.8 \times [(30 \times 18)/60 \times 846]$ $23.8 - P_A = 0.2532$ $P_A = 23.55 mm Hg$ (b) (b) (c) $\frac{1}{4}$ (b) $\frac{1}{4}$ (c) $\Delta_{mix} H = 0$ (c) $\Delta_{mix} V = 0$ (c) Δ_{mix		mass		
$\frac{23.8 - P_A}{23.8} = (30 \times 18) / 60 \times 846$ $23.8 - P_A = 23.8 \times [(30 \times 18) / 60 \times 846]$ $\frac{23.8 - P_A = 23.8 \times [(30 \times 18) / 60 \times 846]}{P_A = 23.55 mm Hg}$ (b) $\boxed{\text{Ideal solution}}$ (a) It obeys Raoult's law over the entire range of concentration. (b) $\Delta_{mix} H = 0$ (c) $\Delta_{mix} W = 0$ (c) $\Delta_{mix} V = 0$ (c) $\Delta_{mix} V$ is not equal to 0. (c) Δ	25			1/
$23.8 - P_A = 23.8 \times [(30 \times 18) / 60 \times 846]$ $23.8 - P_A = 0.2532$ $P_A = 23.55 mm Hg$ (b) $\boxed{\text{Ideal solution}}$ (a) It obeys Raoult's law over the entire range of concentration. (b) $\Delta_{mix} H = 0$ (c) $\Delta_{mix} V = 0$ (c) $\Delta_{mix} V = 0$ (c) $\Delta_{mix} V$ is not equal to 0. (c) $\Delta_{mix} V$ is not equal to 0. (any two correct difference) (c) $A_{mix} W = 0$ (c) $A_{mix} W = 0$ (c) $A_{mix} V = 0$ (c) A	25.	(a) $(P_A^o - P_A)/P_A^o = (w_B \times M_A)/(I)$ 23.8 - P ₄	$(M_B \times W_A)$	1/2
$23.8 - P_A = 0.2532$ $P_A = 23.55 mm Hg$ (b) $\boxed{14 eal solution}$ (a) It obeys Raoult's law over the entire range of concentration. (b) $\Delta_{mix} H = 0$ (c) $\Delta_{mix} V = 0$ (b) $\boxed{1 + 1}$ (b) $\Delta_{mix} H = 0$ (c) $\Delta_{mix} V = 0$ (c) $\Delta_{mix} V$ is not equal to 0. (c) $\Delta_{mix} V$ is not equal to 0. (any two correct difference) (c) $\Delta_{mix} V = 0$		$\frac{2000}{23.8} = (30)$	× 18) /60 × 846	1
$23.8 - P_A = 0.2532$ $P_A = 23.55 mm Hg$ (b) $\boxed{14 eal solution}$ (a) It obeys Raoult's law over the entire range of concentration. (b) $\Delta_{mix} H = 0$ (c) $\Delta_{mix} V = 0$ (b) $\boxed{1 + 1}$ (b) $\Delta_{mix} H = 0$ (c) $\Delta_{mix} V = 0$ (c) $\Delta_{mix} V$ is not equal to 0. (c) $\Delta_{mix} V$ is not equal to 0. (any two correct difference) (c) $\Delta_{mix} V = 0$				
$23.8 - P_A = 0.2532$ $P_A = 23.55 mm Hg$ (b) $\boxed{\begin{array}{c c c c c } \hline & & & & & \\ \hline & & & & \\ \hline & & & & \\ \hline & & & &$		$23.8 - P_A = 23.8 \times [($	$(30 \times 18) / 60 \times 846]$	1/2
$P_{A} = 23.55 \ mm \ Hg$ (b) $Ideal \ solution \qquad Non \ ideal \ solution \qquad (a) \ It \ obeys \ Raoult's \ law \\ over \ the \ entire \ range \ of \ concentration. \\ (b) \ \Delta_{mix} \ H = 0 \\ (c) \ \Delta_{mix} \ V = 0 \qquad (b) \ \Delta_{mix} \ H \ is \ not \ equal \\ to \ 0. \\ (c) \ \Delta_{mix} \ V \ is \ not \ equal \\ to \ 0. \\ (any \ two \ correct \ difference) \qquad (any \ two \ correct \ difference) \qquad (a) \ density \ densit$				/2
$P_{A} = 23.55 \ mm \ Hg$ (b) $Ideal \ solution \qquad Non \ ideal \ solution \qquad (a) \ It \ obeys \ Raoult's \ law \\ over \ the \ entire \ range \ of \ concentration. \\ (b) \ \Delta_{mix} \ H = 0 \\ (c) \ \Delta_{mix} \ V = 0 \qquad (b) \ \Delta_{mix} \ H \ is \ not \ equal \\ to \ 0. \\ (c) \ \Delta_{mix} \ V \ is \ not \ equal \\ to \ 0. \\ (any \ two \ correct \ difference) \qquad (any \ two \ correct \ difference) \qquad (a) \ density \ densit$		$238 - P_{1} = 0.2532$		
(b) $\begin{array}{ c c c c }\hline & (b) \\\hline \hline & \underline{ deal \ solution} & \underline{ ldeal \ solution} \\\hline & (a) \ It \ obeys \ Raoult's \ law \\ over the entire \ range \ of \\ concentration. \\(b) \ \Delta_{mix} \ H = 0 \\(c) \ \Delta_{mix} \ V = 0 \\\hline & (b) \ \Delta_{mix} \ H \ is \ not \ equal \\to \ 0. \\(c) \ \Delta_{mix} \ V \ is \ not \ equal \\to \ 0. \\(any \ two \ correct \ difference) \\\hline \end{array}$				
$\begin{array}{ c c c c c }\hline & & & & & & & & & & & & & & & & & & &$		(b)		
$(a) It obeys Raoult's law over the entire range of concentration. (b) \Delta_{mix} H = 0(c) \Delta_{mix} V = 0 (b) \Delta_{mix} H is not equal to 0.(c) \Delta_{mix} V = 0 (c) \Delta_{mix} V is not equal to 0.(c) \Delta_{mix} V is not equal to 0.(c) \Delta_{mix} V is not equal to 0.(c) \Delta_{mix} V is not equal to 0.(any two correct difference) (a) Does not obey Raoult's law over the entire range of concentration. (b) \Delta_{mix} H is not equal to 0.(c) \Delta_{mix} V is not equal to 0.(any two correct difference) (a) V is not equal to 0.$				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Ideal solution Non ideal solution		
$\begin{array}{c c} & \begin{array}{c} \text{concentration.} \\ (b) & \Delta_{mix} H = 0 \\ (c) & \Delta_{mix} V = 0 \end{array} & \begin{array}{c} \text{range of concentration.} \\ (b) & \Delta_{mix} H \text{ is not equal} \\ to 0. \\ (c) & \Delta_{mix} V \text{ is not equal} \\ \hline to 0. \\ (any two correct difference) \end{array} \end{array}$		(a) It obeys Raoult's law	(a) Does not obey Raoult's	
$\begin{array}{c c} & \begin{array}{c} \text{concentration.} \\ (b) & \Delta_{mix} H = 0 \\ (c) & \Delta_{mix} V = 0 \end{array} & \begin{array}{c} \text{range of concentration.} \\ (b) & \Delta_{mix} H \text{ is not equal} \\ to 0. \\ (c) & \Delta_{mix} V \text{ is not equal} \\ \hline to 0. \\ (any two correct difference) \end{array} \end{array}$		over the entire range of	law over the entire	1 +1
$(b) \ \Delta_{mix} H = 0 \\ (c) \ \Delta_{mix} V = 0$ $(b) \ \Delta_{mix} H \text{ is not equal} \\ (c) \ \Delta_{mix} V = 0$ $(c) \ \Delta_{mix} V \text{ is not equal} \\ (c) \ \Delta_{mix} V \text{ is no equal} \\ (c) \ \Delta_{mix} V $				_
$(c) \ \Delta_{mix} V = 0 \qquad to 0. \\ (c) \ \Delta_{mix} V \text{ is not equal} \\ to 0. \\ (any two correct difference) \qquad 1$				
$\begin{array}{c c} (c) & \Delta_{mix} V \text{ is not equal} \\ \hline to 0. \\ \hline (any two correct difference) \end{array}$				
26. a. (i) OH (i) OH (i) 1				
26. a. (i) OH (i) OH (i) 1				
26. a. OH 1 (i) OH 1				
	26.	a.		
		CN CN		1
		$\left[\bigcirc\right]$		
		(ii)		

(c) CH	$l_3 \text{COOH} \xrightarrow{Cl_2/P} \text{CH}_2 \text{COOH} \xrightarrow{k}$	$\xrightarrow{(OH(Aq))} CH_2 COOH$	1
	Cl	ОН	
		(or any other correc	t method)

1	Dr. (Mrs.) Sangeeta Bhatia	12	Sh. S. Vallabhan	
2	Dr. K.N. Uppadhya	13	Dr. Bhagyabati Nayak	
3	Prof. R.D. Shukla	14	Ms. Anila Mechur Jayachandran	
4	Sh. S.K. Munjal	15	Mrs. Deepika Arora	
5	Sh. D.A. Mishra	16	Ms. Seema Bhatnagar	
6	Sh. Rakesh Dhawan	17	Mrs. Sushma Sachdeva	
7	Dr. (Mrs.) Sunita Ramrakhiani	18	Dr. Azhar Aslam Khan	
8	Mrs. Preeti Kiran	19	Mr. Roop Narain Chauhan	
9	Ms. Neeru Sofat	20	Mr. Mukesh Kumar Kaushik	
10	Sh. Pawan Singh Meena	21	Ms. Abha Chaudhary	
11	Mrs. P. Nirupama Shankar	22	Ms. Garima Bhutani	