MARKING SCHEME Secondary School Examination, 2024 SCIENCE (Subject Code–086) [Paper Code: 31/1/1]

Maximum Marks: 80

Q. No.	EXPECTED ANSWER / VALUE POINTS	Marks	Total Marks
	SECTION A		
1	(b) $/ 2 NaOH + Zn \longrightarrow Na_2ZnO_2 + H_2$	1	1
2	(c) /2 AgBr \longrightarrow 2 Ag + Br ₂	1	1
3	(c) /Mercury and Bromine	1	1
4	(c) / (ii) and (iv)	1	1
5	$(d)/Na_2CO_3$	1	1
6	(c) /amphoteric	1	1
7	$(d) / MnO_2$ is reduced and HCl is oxidised	1	1
8	(b) / (ii) and (iv)	1	1
9	(d) / (i) and (iv)	1	1
10	(c) /Neuromuscular junction	1	1
11	(c) / (ii) and (iii)	1	1
12	(c) /At twice the focal length of the lens	1	1
13	(d) /Retina	1	1
14	(a) /	1	1
15	(c) /Tiger, grass, snake, frog	1	1
16	(d) / Plasmodium	1	1
17	(a) /Both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of Assertion (A).	1	1
18	(b) / Both Assertion (A) and Reason (R) are true, but Reason (R) is <i>not</i> the correct explanation of Assertion (A).	1	1
19	(c) /Assertion (A) is true, but Reason (R) is false.	1	1
20	(c) /Assertion (A) is true, but Reason (R) is false.	1	1
	SECTION B		
21	Combination reaction – Single product is formed (or any other)	¹ / ₂ + ¹ / ₂	
	$\begin{array}{ccc} CaO(s) + H_2O(l) & \longrightarrow & Ca(OH)_2(aq) + Heat\\ & & & \\ & \\ & & \\ & \\ & &$	1	
			2
22	Role of:(i) Hydrochloric acid: Creates an acidic medium for facilitating the action of enzyme / kills microorganisms.	1⁄2	
	(ii) Villi: Increases the surface area for absorption of digested food.	1⁄2	
	(iii) Anal Sphincter: Exit of waste material from anus is regulated.	1⁄2	

	(iv) Lipase: Breakdown / digestic	on of emulsified fats or lipids	1/2	2
23	(A)			
	Movement of leaves of	Downward movement of		
	sensitive plant	roots		
	(i) Stimulus is touch.	Stimulus is gravity.		
	(ii) No growth is	Growth is involved in the	1+1	
	involved in the	movement		
	movement.			
	(iii) Non directional	Directional		
		(Any t		
		(Any other suitable differen	nce)	
		OR		
	(B)			
	Thyroxine		1/2	
	Thyroid gland		1/2	
	Iodine is necessary for thyro	oid gland to make thyroxine hormo	ne.	
	Deficiency of iodine in our d	iet causes goitre.	1	
				2
24	u = -10cm; f = +15 cm		1/2	
	$\frac{1}{f} = \frac{1}{f} + \frac{1}{f}$		1/2	
	$f \vee u$		/2	
	1 1 1			
	$\frac{1}{15} = \frac{1}{v} + \frac{1}{-10 \text{ cm}}$			
	$\frac{1}{v} = \frac{1}{15 \text{ cm}} + \frac{1}{10 \text{ cm}}$			
	v = +6 cm	_	1	2
25	Image is formed behind the mirror (A) When two 6 O resistances are	r. e connected in parallel and the third		2
	resistance of 6Ω is connected in se			
	equivalent resistance will be 9 Ω	-		
	6Ω ₩	_		
			1	
	6Ω ₩			
	Α 6Ω	B		
		,		

	[Award marks for writing the statement or drawing the diagram]		
	$\frac{1}{R_P} = \frac{1}{6\Omega} + \frac{1}{6\Omega}$		
	$\begin{array}{l} \therefore R_P = 3 \ \Omega \\ \mathrm{Rs} = 6 + 3 = 9 \Omega \end{array}$	1	
	OR		
	(B) Equivalent resistance = $R_1 + R_2 = 1 \Omega + 2 \Omega = 3 \Omega$	1/2	
	$I = \frac{\sqrt{7}}{R}$ $= \frac{6V}{1\Omega + 2\Omega} = \frac{6V}{3\Omega} = 2A$	1⁄2	
	Electric power, $P = I^2 R$ = (2A) ² × 2 Ω = 4 × 2 W = 8 W	1/2 1/2	
		72	2
26	(i) If they intersect then at the point of intersection, there would be two directions of magnetic field or compass needle would point towards two directions, which is not possible.	1	
	(ii) Uniform magnetic field is represented by equidistant parallel straight lines	1⁄2	
		1/2	
			2
	SECTION C		2
27	(i) Change in colour: The solution will become green in colour.	1/2	
	$\begin{array}{rcl} Fe(s) + CuSO_4(aq) &\longrightarrow & FeSO_4 + Cu(s) \\ & Blue & & Green \\ & & (or any other reaction which shows change in colour) \end{array}$	1⁄2	
	(ii) Change in temperature: The temperature will increase.	1/2	
	$NaOH(aq) + HCl(aq) \rightarrow NaCl(aq) + H_2O(l) + Heat$	1⁄2	

	(or any other reaction which shows change in temperature)		
	(iii) Formation of precipitate: Yellow precipitate of PbI ₂ is formed.	1⁄2	
	$\begin{array}{c} Pb(NO_3)_2 (aq) + 2 KI(aq) \longrightarrow PbI_2(s) + 2 KNO_3(aq) \\ Yellow \end{array}$	1/2	
	(or any other reaction which shows formation of precipitate)		3
20		1/	
28	(i) The taste of tomato juice will be slightly sour; The pH 4.6 indicates that tomato juice is an acid and acids are sour in taste.	1/2 1/2	
		1/2	
	 (ii) Acids that give more H⁺ ions / H₃O⁺ are Strong Acids Bases that give less OH⁻ ions are Weak Bases. 	1/2	
	(iii) Living animals can survive within a pH range of 7·0 to 7·8 . So, if the pH of river water becomes low due to acid rain (pH < 5·6), then survival of aquatic animals becomes difficult.	1	
			3
29	(i) Diffusion /Diffusion pressure alone cannot take care of oxygen delivery to all parts of the body.	1	
	(ii) Reasons:		
	(a) To ensure that the air-passage does not collapse .	1⁄2	
	(b) There is sufficient time for oxygen to be absorbed and for the carbon dioxide to be released .	1⁄2	
	(c) Chest cavity becomes larger.	1⁄2	
	(d) Because exchange of gases takes place in the alveoli.	1⁄2	
			3
30	Reflex action is a sudden/spontaneous/immediate action in response to the environment/stimulus e.g. sneezing.	1	
	Stimulus \longrightarrow Receptors (Nose) \longrightarrow Sensory neuron Response \leftarrow Effector \leftarrow Motor neuron \leftarrow Spinal cord \leftarrow (Muscles) (Relay neuron) (any other example)	2	
			3
31	(i) Hypermetropia or Far-sightedness.	1⁄2	
	Reason – Image is formed behind the retina. / Near point for the person is farther away from the normal near point (25 cm)	1⁄2	

	 (ii) Focal length of the eye lens is too long. The eyeball has become too small. 	1/2 1/2	
		1	
	N = Near point of a hypermetropic eye N'= Near point of a normal eye		3
32	 (i) Right - Hand Thumb Rule If the wire carrying current is held in our right hand such that the Thumb points towards the Direction of Current, then the fingers wrap around the conductor in the direction of field lines of the magnetic field. 	1⁄2 1	
	 (ii) Fleming's Left - Hand Rule Stretch the thumb, forefinger and middle finger of left hand mutually perpendicular to each other, such that first finger points in the direction of Magnetic Field, second finger in the direction of Current, then thumb in the direction of motion or force acting on the conductor. 	1/2 1	3

33	 (A) Number of plants/organisms of first trophic level will increase. Number of lions/ organisms of third trophic level will decrease. 	1	
	 No As the organisms of that level will find alternative foods and will not starve to death / food web is more stable where other animals as prey may be available. 	1/2 1/2	
	OR		
	$(B) \qquad \qquad$	1	
	 Gas 'X' is Ozone Ozone shields the surface of the earth from ultra-violet (UV) radiations from the sun. 	1	
	 CFCs (Chlorofluorocarbons) 	1/2	
	 Succeeded in forging an agreement to freeze CFC production at 1986 levels / Manufacturing of CFC free refrigerators 	1/2	
			3
	SECTION D		
34	(A)(i) A series of carbon compounds in which the same functional group substitutes for hydrogen in a carbon chain / Series of compounds having same functional group and similar chemical properties.	1	
	(ii) Because melting point and boiling point increase with molecular mass.	1	
	(iii) Because chemical properties of organic compounds are solely determined by their functional group which remains same in a homologous series.	1	
	(iv) (i) Aldehyde: Propanal	1⁄2	
	$H_{3}C - C - C - H$ $H_{3}C - C - C - H$ $H_{3}C - C - H$ $H_{3}C - C - H$ $H_{3}C - C - H$	1⁄2	
	(ii) Ketone: Propanone	1/2	
	$H_3C - C - CH_3 / CH_3COCH_3$	1/2	
	OR		

	(B) (i)Ethanol	1/2	
	Structure: $H H$ $ $ $H - C - C - OH / C_2H_5OH / CH_3CH_2OH$ $ $ $H H$	1	
	(ii) Ethene is formed	1⁄2	
	$\begin{array}{c} C_2H_5OH \xrightarrow{Conc.H_2SO_4443K (Heat)} & H_2C = CH_2 + H_2O \\ \hline Ethanol & Ethene & Water \end{array}$	1	
	[Note: Deduct ½ mark if the conditions required are not mentioned in the equation]		
	• Concentrated Sulphuric acid acts as a dehydrating agent.	1/2	
	(iii) Ethene	1⁄2	
	$H \xrightarrow{C} \xrightarrow{X} \xrightarrow{X} \xrightarrow{C} \xrightarrow{X} \xrightarrow{K} \xrightarrow{H}$	1	5
35	 (A) (i) Chemical Method/Oral pills Side effects: Change the hormonal balance of the body. 	1/2 1/2	
	• Barrier method / Loop / Copper–T Side effects: Irritation in uterus.	1/2 1/2	
	 Surgical method / Fallopian tube in female is blocked; Side effects – may cause infections. 	1/2 1/2	
	(ii)(a) Fertilized egg/zygote gets implanted in the lining of uterus and starts dividing.	1	
	(b) If the egg is not fertilized, the thick and spongy lining of the uterus breaks and comes out through the vagina as blood and mucous.	1	
	OR		

	(B) (i) Spores. Sporangia Hyphae	1	
	 (a) Reproductive part – Sporangia (b) Non-reproductive part – Hypha/Hyphae. 	$\frac{1/2}{1/2}$	
	• Dry slice of bread does not provide moisture and nutrients necessary for the germination and multiplication of Rhizopus.	1	
	 (ii) Budding: Hydra uses regenerative cells for reproduction. A bud develops as 	1	
	an outgrowth due to repeated cell division at one specific site and develop into tiny individuals. On maturation, these buds detach from the parent and become new individuals. <i>Alternate answer:</i>	1	
	 Regeneration: It is carried out by specialised cells. If hydra is cut or broken into many pieces, many of these pieces grow into separate individuals. [Note: Award marks for either of the processes and its explanation] 		5
36	 (A) (i) Electric power : Rate at which electrical energy is dissipated or consumed / Rate of supplying energy to maintain the flow of current through a circuit. 	1	
	• $P = \frac{V^2}{R}$	1	
	(ii) (a) $(1 \text{ unit} = 1 \text{kWh})$		
	Power, $P = \frac{Electrical energy consumed}{Time}$	1⁄2	
	$=\frac{11 \text{kWh}}{5 \text{h}}=2.2 \text{kW} \text{ or } 2200 \text{ W}$	1⁄2	
	(b) $I = \frac{P}{V}$	1/2	

X SCIENCE 31/1/1 PAGE 10

				ı
		$=\frac{2200}{220}=10A$	1⁄2	
		(c) R = $\frac{V^2}{P}$	1⁄2	
		(c) $R = \frac{V^2}{P}$ = $\frac{(220)^2}{2200} = 22 \Omega$ (Alternate formula can be used)	1⁄2	
		OR		
	(B)			
		$R = \rho \frac{l}{A}$	1	
		$\rho = \frac{R \times A}{l}$		
		= $Ohm \times \frac{(m etre)^2}{m etre}$ = ohm metre/ Ωm	1	
	(ii)	Here $l = 3 \text{ m}$, $A = 4 \times 10^{-7} \text{ m}^2$, $R = 60 \Omega$ $\rho = \frac{R \times A}{l}$ $_{60 \times 4 \times 10^{-7}}$		
		$= \frac{\frac{60\times4\times10}{3}}{= 80\times10^{-7} \Omega m}$	1	
	(iii)	Resistivity will not change.	1	
	•	because Resistivity does not depend on the dimension of the conductor / It only depends on the nature of the material.	1	
				5
		SECTION E		
37	(i)	Cathode – Pure copper	1⁄2	
		Anode – Impure copper	1⁄2	
	(ii)	Acidified Copper Sulphate; CuSO ₄	$\frac{1}{2} + \frac{1}{2}$	
L	1		1	l

(iii) (A)			
• Pure copper from the an	node dissolves into electrolyte and an ure metal from the electrolyte is	1	
At anode : Cu \longrightarrow	$\sim Cu^{++} + 2e^{-}$		
At cathode : Cu^{++} +	$2e^- \longrightarrow Cu$ Pure		
	go into the solution whereas insoluble at the bottom of the anode.	1	
[Note: Award marks if explained	d with a suitable labelled diagram]		
	OR		
(iii) (B) In Beaker A : • The blue colour of colourless)	of the solution fades (or becomes	1⁄2	
,	nore reactive than copper	1⁄2	
In Beaker B: • No change in col	In Beaker B: • No change in colour.		
• Reason – Silver i	1⁄2		
			4
 38 (i) In F₁ generation, all pla observed 	ants were tall / No short plants were	1/2	
	nts / No halfway characteristics were ant parental traits were seen and not the	1⁄2	
(ii) Dominant trait	Recessive trait		
Single copy of dominant trait is enough to get it expressed/always expressed	Only expressed when present in pair.	1	
(Any other point)			
(iii) (A)Self-pollination / Self-fertil	lisation / Selfing of F ₁ plants	1/2	
• Ratio – Round Yellow : Wrinkled Green			
Traits are inherited indeper	ndently.	$\frac{1/2}{1}$	

1	OR		
	(iii)(B) If pea plants with yellow seeds are crossed with plants of green seeds, it is found that in F₁ generation all the plants have yellow seeds. When		
	F_1 plants are self-pollinated, it is found that in F_2 generation, plants with		
	yellow seeds and plants with green seeds are obtained. This shows that both the traits are inherited but only one trait is visible in F_1 progeny while the other remains unexpressed.	2	
	[Note: Award marks if explained by taking one characteristic / Or explained the same diagrammatically]		4
39	(i)		4
	• Mirror A.	1⁄2	
	• as the object is placed beyond the centre of curvature of the mirror.	1/2	
	(ii) Same size/ Real / Inverted	$\frac{1}{2} + \frac{1}{2}$	
	(Any two)		
	(iii) (A) Nature-Virtual and erect	1⁄2	
	Size-magnified	1⁄2	
	Y X F B B	1	
	(Deduct ½ mark if direction of rays are not marked)		
	OR (iii) (B) Here $f = -12$ cm, $u = -18$ cm, $v = ?$	1⁄2	
	Mirror formula $\frac{1}{f} = \frac{1}{v} + \frac{1}{u}$ or $\frac{1}{v} = \frac{1}{f} - \frac{1}{u}$ $\frac{1}{v} = \frac{1}{-12} - \frac{1}{-18}$	1/2	
	$\nu -12 -18$		
	v = -36cm In front of the mirror at a distance of 36 cm from the pole of the mirror.	1	
			4

X SCIENCE 31/1/1 PAGE 13