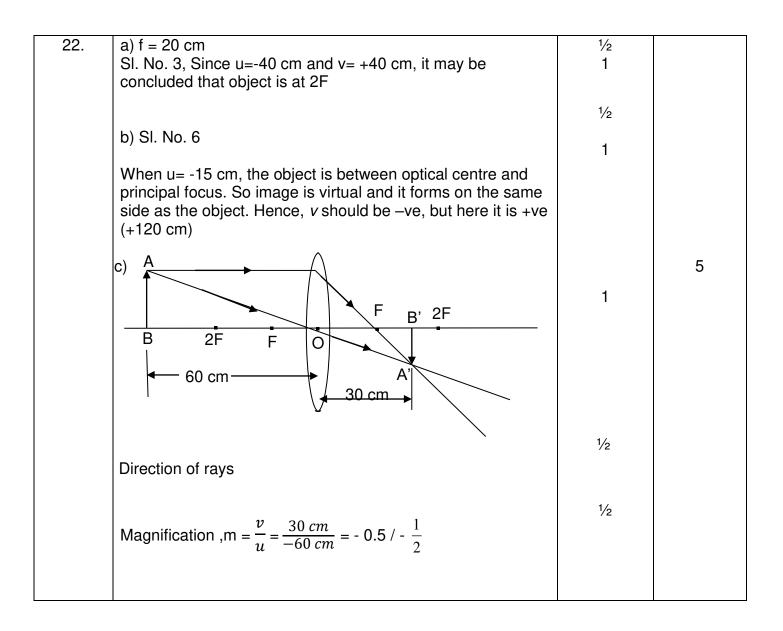
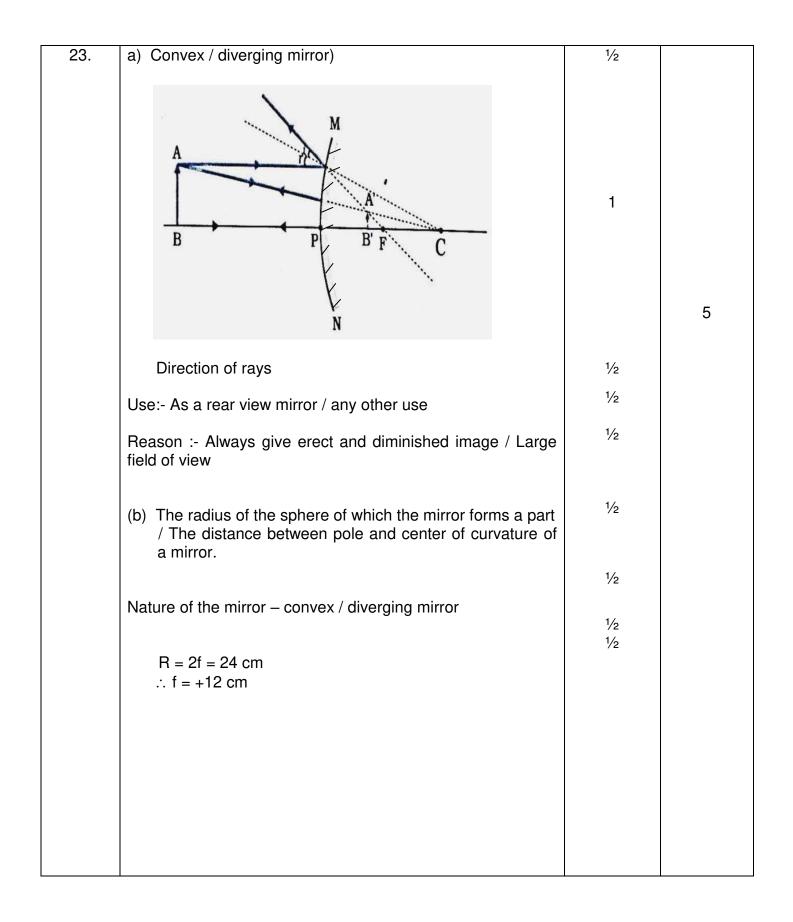
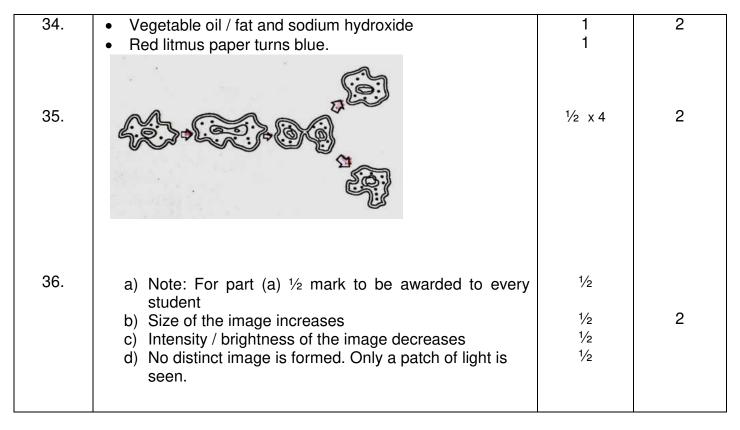
Summative Assessment II (March- 2017) Marking Scheme Class X – Outside Delhi

Code No. 31/1


-			
Q. No.	Expected Answer / Value point Section - A	Distribution of marks	Marks
1.	C ₂ H ₆ , C ₃ H ₈	1/2 + 1/2	1
2.	Creation of DNA copy / Replication / Copying of DNA	1	1
3.	1000000 J	1	1
4.	 Virtual Erect Diminished On the same side as the object / or any other characteristic 	½ x 4	2
5.	 Conserving forests helps in (i) retaining sub soil water and (ii) checking floods / any other Conserving wild life helps in (i) maintaining ecological balance and (ii) protecting the nature (or any other) 	½ x 4	2
6.	 Water stored during rainy season can be used as and when required by the community. Ground water level increases due to recharging. 	1 + 1	2
7.	Н Н Н—С—С—ОН	1	
	́н́н́	1⁄2	
	Ethene is produced	1	
	$CH_{3}CH_{2}OH \xrightarrow{Conc. H_{2}SO_{4}} C_{2}H_{4} + H_{2}O$ $443K$	1/2	3
	Conc. H_2SO_4 acts as a dehydrating agent.		
8.	Esterification – A process in which an alcohol and a carboxylic acid react in the presence of conc. H_2SO_4 to form an ester.	1⁄2	
	$CH_{3}COOH + C_{2}H_{5}OH \xrightarrow{Conc. H_{2}SO_{4}} \rightarrow CH_{3}COOC_{2}H_{5} + H_{2}O$	1⁄2	


	 Saponification – A process in which an ester reacts with sodium hydroxide to form sodium salt of an acid and alcohol / an ester reacts in the presence of an acid or a base to give back the alcohol and carboxylic acid. 	1⁄2	
	 CH₃COOC₂H₅ + NaOH → C₂H₅OH + CH₃COONa 	1⁄2	3
	 Esters are used in ice creams / perfumes Saponification process is used in preparation of soap. 	1/2 1/2	
9.	 Periods – 7, Groups – 18 	1⁄2 + 1⁄2	
	• Metallic character decreases along the period because effective nuclear charge increases on the valence electrons hence decrease in tendency to lose electrons.	1⁄2 + 1⁄2	3
	 Metallic character increases down a group because effective nuclear charge experienced by valence electrons decrease, hence tendency to lose electron decreases. 	1⁄2 + 1⁄2	
10.	 Aluminium (Al) Reason – Valency of Na is 1, Mg is 2, Al is 3 	1/2 1/2	
	 Sodium (Na) Reason – As we move from left to right in a period, the atomic radius decreases / increase in nuclear charge pulls the electrons closer to the nucleus reducing the atomic size. 	1/2 1/2	
	 Sodium (Na) Reason – Reactivity decreases on moving from left to right in a period / any other reason 	1/2 1/2	3
11.	 For continuation of species / perpetuation of species It promotes diversity of characters / helps to show the variations which enhances the survival chances. 	1 1	
	 Increases population of a species / any other answer 	1	3
12.	 Vegetative propagation – A process in which any vegetative part of a plant (root, stem or leaf) gives rise to a new plant under appropriate conditions. 	1	
	 Two advantages :- (i) Large number of plants obtained in a short interval. (ii) Propagation of seedless plants is made possible / any other advantage. 	1/2 1/2	
	 Two disadvantages :- (i) No genetic variations, so, less adaptability to the environment. (ii) The disease of plants gets 	1/2 1/2	3
13.	 transferred to the offsprings. Three techniques – Barrier method, chemical method, surgical 	½ x 3	5
	methodChemical method	1/2	
	 It maintains health of the woman, parents can provide more attention to children / more resources are available to the family 	1⁄2 x 2	
	/ any other.		3

14.	 In Mendel's experiment, when pure tall pea plants were cr with pure dwarf pea plants, only tall pea plants were obtain F₁ generation. 		1	
	 On selfing the pea plants of F1 generation both tall and dw pea plants were obtained in F2 generation. 	varf	1	
	 Reappearance of the dwarf pea plants in F₂ generation pro that the dwarf trait was inherited but not expressed in F₁ generation. 	oves	1	
	Note:- If explained with flow chart with proper description, full r be awarded.	marks		3
15.	 Different life forms have evolved during the course of evo Classification deals with the grouping of these life forms in groups and sub groups based on similarities and differenc The more characteristics any two species have in commor more closely they are related. Thus classification helps in tracing the evolutionary relation between the two organisms. Hence, evolution and classific are interlinked. 	to es. n, nship	1 1 1	3
16.	Concave / diverging lens. A $2F_1$ B F_1 B N	1/2 1		3
	Direction of rays $f = \frac{1}{P}$, P = -10D,	1/2 1/2		
	$f = \frac{1}{-10D} = -0.1 \text{ m/-10 cm}$	1⁄2		


17.	Different colours of light bend through different angles with respect to the incident ray / different speed of different colours of light in glass / different values of refractive index of glass for different colours of light.	1	3
	White light R R R White light P ₁ A	1	
	Direction of ray & labelling	1/2 + 1/2	
18.	 a) Two ways of creating awareness Door to door campaigning Nukkad natak / any other method. 	1 + 1	3
	b) Rain water harvesting with explanation / preventing over extraction of underground water / any other method	1⁄2 + 1⁄2	
19.	 Compounds of hydrogen and carbon Alkanes - CnH_{2n+2} Alkenes - CnH_{2n} Alkynes - CnH_{2n-2} 	1/2 1/2 1/2 1/2 1/2	
	• . H = H = H = H H = C = C = H, $H = C = C = HH = H$	½ x3	5
	Addition reaction / hydrogenation	1⁄2	
	$R \xrightarrow{C} C = C \xrightarrow{R} \xrightarrow{R \xrightarrow{Ni/Pd catalyst}}_{H_2} H \xrightarrow{R} \xrightarrow{R} \stackrel{R}{\downarrow} \stackrel{R}{\downarrow}_{I}$ $R \xrightarrow{R} \xrightarrow{R} H \xrightarrow{R} \xrightarrow{R} H \xrightarrow{R} H$	1	

20.	(a) Functions :]
	(I) Ovary:-		
	(i) Production of female hormones / estrogen / progesterone	$\frac{1}{2} + \frac{1}{2}$	
	(ii) Production of female gamete/egg/ germ cells	72 + 72	
	(II) Uterus:- (i) Implementation of averate / embryo		
	(i) Implantation of zygote / embryo(ii) Nourishment of developing embryo	1/2 + 1/2	5
	(III) Fallopian tube :- (i) Transfer of female gemete from the overv		
	(i) Transfer of female gamete from the ovary(ii) Site of fertilisation	¹ /2 + ¹ /2	
	(b) Structure of placenta :- It is a special disc like tissue embedded in mother's uterine wall and connected to the	1	
	foetus / embryo.	I	
	Functions of placenta :- It provides a large surface area for glucose and oxygen / nutrients to pass from mother's body		
	to the developing / developed embryo / foetus and also	1	
	helps in passing the waste from the foetus / embryo to the		
	mother's body.		
21.	Acquired traits – Traits which develop in the life time of	1	
	an individual and do not pass to the progeny.	17	
	Example- Learning a skill such as dance / music / loss of body parts / weight / any other example.	1/2	
	 Inherited traits – Traits present in the gamete / germ 	1	
	cells which can be seen in the progeny.	47	
	Example – Skin colour / eyebrows / any other example.	1/2	5
	Reasons – Traits / characteristics acquired during one's		0
	life time do not bring any change in the DNA of the	1	
	reproducing cells / germ cells.		
	Examples - Decrease in body weight of beetles due to starvation do not pass on to the next generation	1	
	because there is no change in the germ cells of beetles.		

24.	2)		
24.	 a) excessive curvature of the eye lens elongation of the eyeball 	1/2 1/2	
	i)		
	Parallel rays from distant object (at infinity) Image is formed in front of the retina	1	
	ii) Concave / diverging lens	1/2	5
	Parallel rays from distant object (at infinity) F Virtual image formed Concave lens to correct myopia	1	0
	b) $f = -5$ m (since lens is concave)	1/2	
		1/2	
	$P = \frac{1}{f(\text{metre})}$ P= - 0.2 D	1/2	
25.	D Section - B	1	
26.	С	1	
27.	D	1	
28.	В	1	
29.	С	1	
30.	D	1	
31.	D	1	
32.	В	1	
33.	С	1	9

Outside Delhi -31/1