MARKING SCHEME

CLASS XII

MATHEMATICS (CODE-041)

SECTION: A (Solution of MCQs of 1 Mark each)

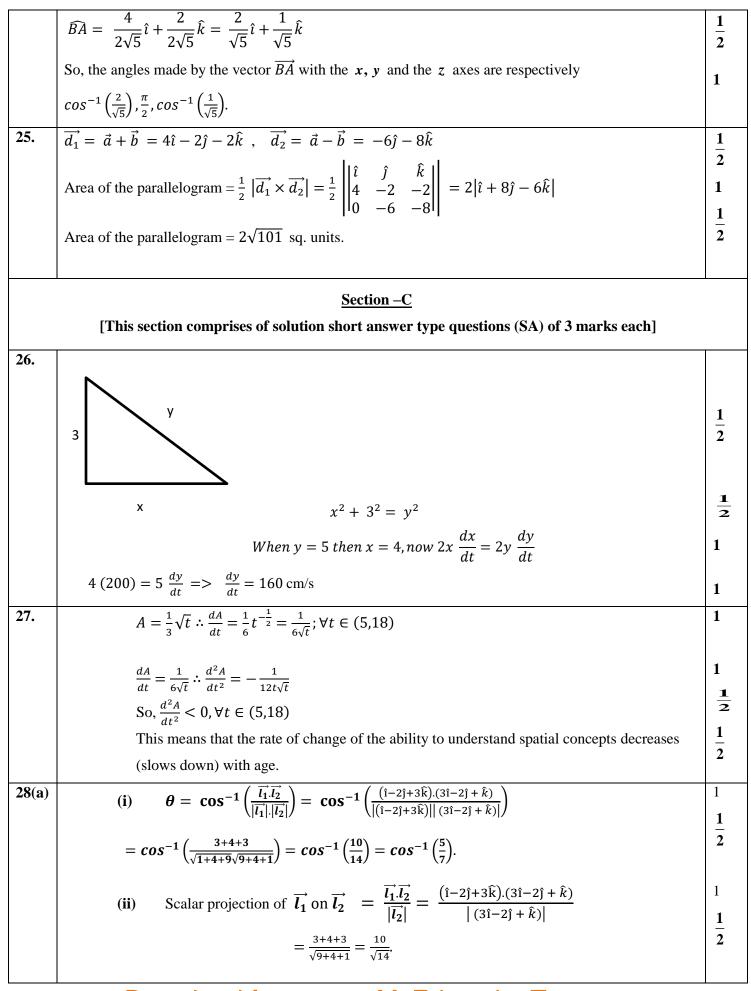
Q no.	ANS	HINTS/SOLUTION
1.	(D)	For a square matrix A of order $n \times n$, we have $A.(adj A) = A I_n$, where I_n is the identity matrix of order $n \times n$. So, $A.(adj A) = \begin{bmatrix} 2025 & 0 & 0 \\ 0 & 2025 & 0 \\ 0 & 0 & 2025 \end{bmatrix} = 2025I_3 \implies A = 2025 \& adj A = A ^{3-1} = (2025)^2$ $\therefore A + adj A = 2025 + (2025)^2$.
2.	(A)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
3.	(C)	$y = e^{x} = \frac{dy}{dx} = e^{x}$ In the domain (R) of the function, $\frac{dy}{dx} > 0$, hence the function is strictly increasing in $(-\infty, \infty)$
4.	(B)	$ A = 5, B^{-1}AB ^2 = (B^{-1} A B)^2 = A ^2 = 5^2.$
5.	(B)	A differential equation of the form $\frac{dy}{dx} = f(x, y)$ is said to be homogeneous, if $f(x, y)$ is a homogeneous function of degree 0. Now, $x^n \frac{dy}{dx} = y \left(\log_e \frac{y}{x} + \log_e e \right) \Rightarrow \frac{dy}{dx} = \frac{y}{x^n} \left(\log_e e \cdot \left(\frac{y}{x} \right) \right) = f(x, y)$; (<i>Let</i>). $f(x, y)$ will be a homogeneous function of degree 0 , if $n = 1$.
6.	(A)	Method 1: (<i>Short cut</i>) When the points $(x_1, y_1), (x_2, y_2)$ and $(x_1 + x_2, y_1 + y_2)$ are collinear in the Cartesian plane then $\begin{vmatrix} x_1 - x_2 & y_1 - y_2 \\ x_1 - (x_1 + x_2) & y_1 - (y_1 + y_2) \end{vmatrix} = 0 \Rightarrow \begin{vmatrix} x_1 - x_2 & y_1 - y_2 \\ -x_2 & -y_2 \end{vmatrix} = (-x_1 y_2 + x_2 y_2 + x_2 y_1 - x_2 y_2) = 0$ $\Rightarrow x_2 y_1 = x_1 y_2.$ Download from www.MsEducationTv.com Page 1 of 15

		Method 2:							
		When the points $(x_1, y_1), (x_2, y_2)$ and $(x_1 + x_2, y_1 + y_2)$ are collinear in the Cartesian plane then							
		$\begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_1 + x_2 & y_1 + y_2 & 1 \end{vmatrix} = 0$							
		$\Rightarrow 1.(x_2y_1 + x_2y_2 - x_1y_2 - x_2y_2) - 1(x_1y_1 + x_1y_2 - x_1y_1 - x_2y_1) + (x_1y_2 - x_2y_1) = 0$							
		$\Rightarrow x_2 y_1 = x_1 y_2.$							
7.	(A)	$A = \begin{bmatrix} 0 & 1 & c \\ -1 & a & -b \\ 2 & 3 & 0 \end{bmatrix}$							
		When the matrix A is skew symmetric then $A^T = -A \Rightarrow a_{ij} = -a_{ji}$;							
		$\Rightarrow c = -2; a = 0 \text{ and } b = 3$							
		So, $a+b+c=0+3-2=1$.							
8.	(C)	$P(\overline{A}) = \frac{1}{2}; P(\overline{B}) = \frac{2}{3}; P(A \cap B) = \frac{1}{4}$							
		$\Rightarrow P(A) = \frac{1}{2}; P(B) = \frac{1}{3}$							
		We have, $P(A \cup B) = P(A) + P(B) - P(A \cap B) = \frac{1}{2} + \frac{1}{3} - \frac{1}{4} = \frac{7}{12}$							
		$P\left(\frac{\overline{A}}{\overline{B}}\right) = \frac{P\left(\overline{A} \cap \overline{B}\right)}{P\left(\overline{B}\right)} = \frac{P\overline{(A \cup B)}}{P\left(\overline{B}\right)} = \frac{1 - P(A \cup B)}{P\left(\overline{B}\right)} = \frac{1 - \frac{7}{12}}{\frac{2}{3}} = \frac{5}{8}.$							
9.	(B)	For obtuse angle, $\cos \theta < 0 \implies \vec{p} \cdot \vec{q} < 0$							
		$2\alpha^2 - 3\alpha + \alpha < 0 \implies 2\alpha^2 - 2\alpha < 0 \implies \alpha \in (0, 1)$							
10.	(C)	$\left \vec{a}\right = 3, \left \vec{b}\right = 4, \left \vec{a} + \vec{b}\right = 5$							
		We have, $ \vec{a} + \vec{b} ^2 + \vec{a} - \vec{b} ^2 = 2(\vec{a} ^2 + \vec{b} ^2) = 2(9 + 16) = 50 \Rightarrow \vec{a} - \vec{b} = 5.$							
11.	(B)	Corner pointValue of the objective function $Z = 4x + 3y$							
		1. $O(0,0)$ $z=0$							
		2. $R(40,0)$ $z = 160$							
		3. $Q(30,20)$ $z = 120 + 60 = 180$							
		4. $P(0,40)$ $z = 120$							
		Since , the feasible region is bounded so the maximum value of the objective function $z = 180$ is at							
		Since , the reason region is bounded so the maximum value of the objective function $z = 160$ is at $Q(30,20)$.							

Download from www.MsEducationTv.com Page 2 of 15

12.	(A)	$\int \frac{dx}{x^3 (1+x^4)^{\frac{1}{2}}} = \int \frac{dx}{x^5 \left(1+\frac{1}{x^4}\right)^{\frac{1}{2}}}$
		(Let $1 + x^{-4} = 1 + \frac{1}{x^4} = t$, $dt = -4x^{-5}dx = -\frac{4}{x^5}dx \Rightarrow \frac{dx}{x^5} = -\frac{1}{4}dt$)
		$=-\frac{1}{4}\int \frac{dt}{t^{\frac{1}{2}}} = -\frac{1}{4} \times 2 \times \sqrt{t} + c$, where 'c' denotes any arbitrary constant of integration.
		$= -\frac{1}{2}\sqrt{1 + \frac{1}{x^4}} + c = -\frac{1}{2x^2}\sqrt{1 + x^4} + c$
13.	(A)	We know, $\int_{0}^{2a} f(x) dx = 0$, if $f(2a - x) = -f(x)$
		Let $f(x) = \csc ec^7 x$.
		Now, $f(2\pi - x) = \csc^{7}(2\pi - x) = -\csc^{7}x = -f(x)$
		$\therefore \int_{0}^{2\pi} \csc ec^{7} x dx = 0; \text{ Using the property } \int_{0}^{2a} f(x) dx = 0, \text{ if } f(2a-x) = -f(x).$
14.	(B)	The given differential equation $e^{y'} = x \implies \frac{dy}{dx} = \log x$
		$dy = \log x dx \implies \int dy = \int \log x dx$
		$y = x \log x - x + c$
		hence the correct option is (B).
15.	(B)	The graph represents $y = \cos^{-1} x$ whose domain is $[-1,1]$ and range is $[0,\pi]$.
16.	(D)	Since the inequality $Z = 18x + 10y < 134$ has no point in common with the feasible region hence
		the minimum value of the objective function $Z = 18x + 10y$ is 134 at $P(3,8)$.
17.	(D)	The graph of the function $f: R \to R$ defined by $f(x) = [x]$; (where [.] denotes G.I.F) is a straight
		line $\forall x \in (2.5-h, 2.5+h)$, 'h' is an infinitesimally small positive quantity. Hence, the function is
		continuous and differentiable at $x = 2.5$.
18.	(B)	The required region is symmetric about the y – axis.
		So, required area (in sq units) is $= \left 2 \int_{0}^{4} 2 \sqrt{y} dy \right = 4 \left[\frac{\frac{3}{y^2}}{\frac{3}{2}} \right]_{0}^{4} = \frac{64}{3}.$
19.	(A)	Both (A) and (R) are true and (R) is the correct explanation of (A).
20.	(A)	Both (A) and (R) are true and (R) is the correct explanation of (A).

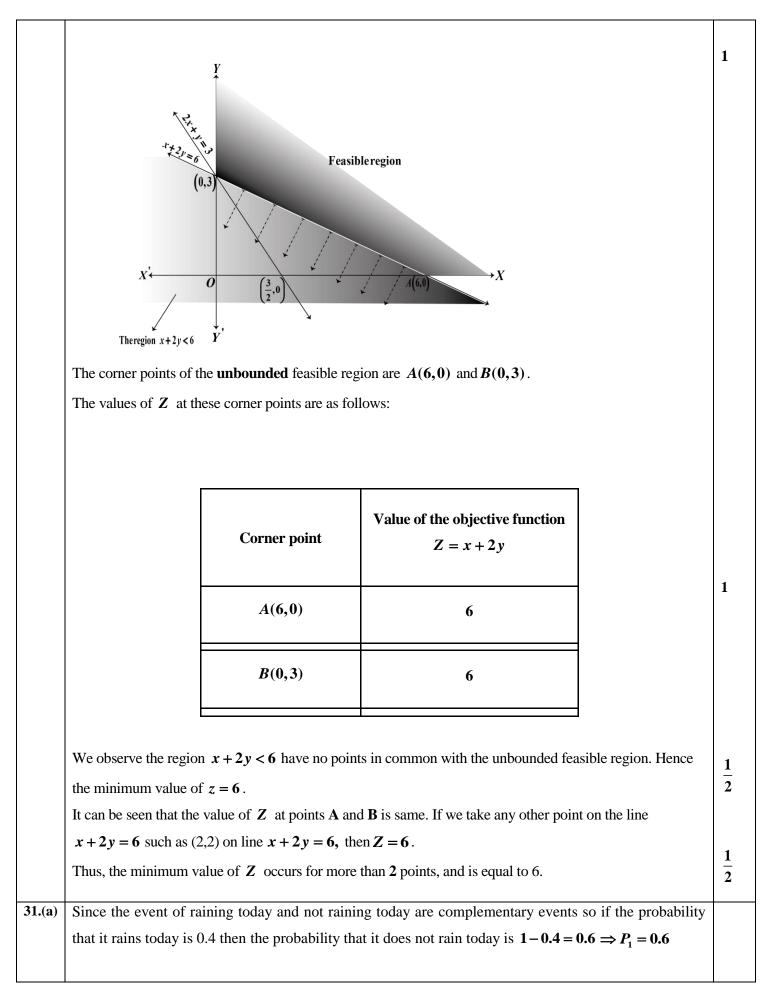
Section –B

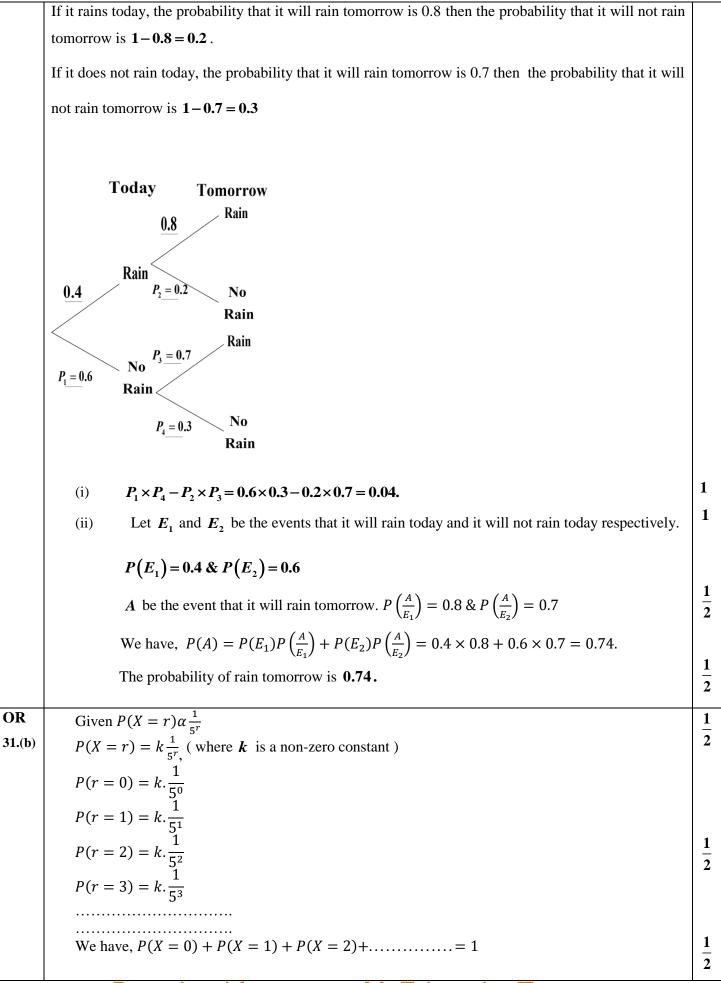

[This section comprises of solution of very short answer type questions (VSA) of 2 marks each]

Download from www.MsEducationTv.com Page 3 of 15

	а	
21	$\cot^{-1}(3x+5) > \frac{\pi}{4} = \cot^{-1}1$	$\frac{1}{2}$
	$=>3x + 5 < 1$ (as $\cot^{-1}x$ is strictly decreasing function in its domain)	$\frac{1}{2}$
	=> 3x < -4	
	$\Rightarrow x < -\frac{4}{3}$	
	$\therefore x \in \left(-\infty, -\frac{4}{3}\right)$	1
22.	The marginal cost function is $C'(x) = 0.00039x^2 + 0.004x + 5$.	1
	C'(150) = ₹ 14.375.	1
23.(a)	$y = \tan^{-1} x$ and $z = \log_e x$.	
	Then $\frac{dy}{dx} = \frac{1}{1+x^2}$	$\frac{1}{2}$
	and $\frac{dz}{dx} = \frac{1}{x}$	$\frac{1}{2}$
	$\frac{dy}{dz} = \frac{\frac{dy}{dx}}{\frac{dz}{dx}}$ So, 1	$\frac{1}{2}$
	So, $\frac{dx}{1} = \frac{1}{\frac{1+x^2}{\frac{1}{x}}} = \frac{x}{1+x^2}.$	$\frac{1}{2}$
OR	Let $y = (\cos x)^x$. Then, $y = e^{x \log_e \cos x}$	
23.(b)		
	On differentiating both sides with respect to x , we get $\frac{dy}{dx} = e^{x \log_e \cos x} \frac{d}{dx} (x \log_e \cos x)$	$\frac{1}{2}$
	$\Rightarrow \frac{dy}{dx} = (\cos x)^{x} \left\{ \log_{e} \cos x \frac{d}{dx} (x) + x \frac{d}{dx} (\log_{e} \cos x) \right\}$	$\frac{1}{2}$
	$\Rightarrow \frac{dy}{dx} = (\cos x)^x \left\{ \log_e \cos x + x \cdot \frac{1}{\cos x} (-\sin x) \right\} \Rightarrow \frac{dy}{dx} = (\cos x)^x (\log_e \cos x - x \tan x) \cdot \frac{1}{\cos x} (-\sin x) = (\cos x)^x (\log_e \cos x - x \tan x) \cdot \frac{1}{\cos x} (-\sin x) = (\cos x)^x (\log_e \cos x - x \tan x) \cdot \frac{1}{\cos x} (-\sin x) = (\cos x)^x (\log_e \cos x - x \tan x) \cdot \frac{1}{\cos x} (-\sin x) = (\cos x)^x (\log_e \cos x - x \tan x) \cdot \frac{1}{\cos x} (-\sin x) = (\cos x)^x (\log_e \cos x - x \tan x) \cdot \frac{1}{\cos x} (-\sin x) = (\cos x)^x (\log_e \cos x - x \tan x) \cdot \frac{1}{\cos x} (-\sin x) = (\cos x)^x (\log_e \cos x - x \tan x) \cdot \frac{1}{\cos x} (-\sin x) = (\cos x)^x (\log_e \cos x - x \tan x) \cdot \frac{1}{\cos x} (-\sin x) = (\cos x)^x (\log_e \cos x - x \tan x) \cdot \frac{1}{\cos x} (-\sin x) = (\cos x)^x (\log_e \cos x - x \tan x) \cdot \frac{1}{\cos x} (-\sin x) = (\cos x)^x (\log_e \cos x - x \tan x) \cdot \frac{1}{\cos x} (-\sin x) = (\cos x)^x (\log_e \cos x - x \tan x) \cdot \frac{1}{\cos x} (-\sin x) = (\cos x)^x (\log_e \cos x - x \tan x) \cdot \frac{1}{\cos x} (-\sin x) = (\cos x)^x (\log_e \cos x - x \tan x) \cdot \frac{1}{\cos x} (-\sin x) = (\cos x)^x (\log_e \cos x - x \tan x) \cdot \frac{1}{\cos x} (-\sin x) = (\cos x)^x (\log_e \cos x - x \tan x) \cdot \frac{1}{\cos x} (-\sin x) = (\cos x)^x (\log_e \cos x - x \tan x) \cdot \frac{1}{\cos x} (-\sin x) = (\cos x)^x (\log_e \cos x - x \tan x) \cdot \frac{1}{\cos x} (-\sin x) = (\cos x)^x (\log_e \cos x - x \tan x) \cdot \frac{1}{\cos x} (-\sin x) = (\cos x)^x (\log_e \cos x - x \tan x) \cdot \frac{1}{\cos x} (-\sin x) = (\cos x)^x (\log_e \cos x - x \tan x) \cdot \frac{1}{\cos x} (-\sin x) = (\cos x)^x (\log_e \cos x - x \tan x) \cdot \frac{1}{\cos x} (-\sin x) = (\cos x)^x (\log_e \cos x - x \tan x) \cdot \frac{1}{\cos x} (-\sin x) = (\cos x)^x (\log_e \cos x - x \tan x) \cdot \frac{1}{\cos x} (-\sin x) = (\cos x)^x (\log_e \cos x - x \tan x) \cdot \frac{1}{\cos x} (-\sin x) = (\cos x)^x (\log_e \cos x - x \tan x) \cdot \frac{1}{\cos x} (-\sin x) = (\cos x)^x (\log_e \cos x - x \tan x) \cdot \frac{1}{\cos x} (-\sin x) = (\cos x)^x (\log_e \cos x - x \tan x) + (\cos x)^x (\log_e \cos x - x \tan x) + (\cos x)^x (\log_e \cos x - x \tan x) = (\cos x)^x (\log_e \cos x - x \tan x) + (\cos x)^x (\log_e \cos x - x \tan x) + (\cos x)^x (\log_e \cos x - x \tan x) + (\cos x)^x (\log_e \cos x - x \tan x) + (\cos x)^x (\log_e \cos x - x \tan x) + (\cos x)^x (\log_e \cos x - x \tan x) + (\cos x)^x (\log_e \cos x - x \tan x) + (\cos x)^x (\log_e \cos x - x \tan x) + (\log_e \cos x - x \tan x) + (\log_e \cos x - x \tan x) + (\log_e \cos x) + (\log_e \cos x - x \tan x) + (\log_e \cos x) + (\log_e \cos x - x \tan x) + (\log_e \cos x - x \tan x) + (\log_e \cos x) + (\log_e \cos x - x \tan x) + (\log_e \cos x) +$	1
24.(a)	We have $\vec{b} + \lambda \vec{c} = (-1 + 3\lambda)\hat{i} + (2 + \lambda)\hat{j} + \hat{k}$	$\frac{1}{2}$
	$(\vec{b} + \lambda \vec{c}) \cdot \vec{a} = 0 \implies 2(-1 + 3\lambda) + 2(2 + \lambda) + 3 = 0$	1
	$\lambda = -\frac{5}{8}$	$\frac{1}{2}$
OR 24.(b)	$\overrightarrow{BA} = \overrightarrow{OA} - \overrightarrow{OB} = (4\hat{\imath} + 3\hat{k}) - \hat{k} = 4\hat{\imath} + 2\hat{k}$	$\frac{1}{2}$
	Download from www.MsEducationTv.com Page 4	

Download from www.MsEducationTv.com


Page 4 of 15


Download from www.MsEducationTv.com

Page 5 of 15

28(b)	Line perpendicular to the lines	
	$\vec{r} = 2\hat{i} + \hat{j} - 3\hat{k} + \lambda(\hat{i} + 2\hat{j} + 5\hat{k})$ and $\vec{r} = 3\hat{i} + 3\hat{j} - 7\hat{k} + \mu(3\hat{i} - 2\hat{j} + 5\hat{k})$.	
	has a vector parallel it is given by $\vec{b} = \vec{b_1} \times \vec{b_2} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 2 & 5 \\ 3 & -2 & 5 \end{vmatrix} = 20\hat{i} + 10\hat{j} - 8\hat{k}$	1
	$\therefore \text{ equation of line in vector form is } \vec{r} = -\hat{i} + 2\hat{j} + 7\hat{k} + a(10\hat{i} + 5\hat{j} - 4\hat{k})$	1
	And equation of line in cartesian form is $\frac{x+1}{10} = \frac{y-2}{5} = \frac{z-7}{-4}$	1
	The equation of the in cartesian form is $10 5 -4$	1
29. (a)	$\int \left\{ \frac{1}{\log_a x} - \frac{1}{(\log_a x)^2} \right\} dx$	
	$= \int \frac{dx}{\log_e x} - \int \frac{1}{(\log_e x)^2} dx = \frac{1}{\log_e x} \int dx - \int \left\{ \frac{d}{dx} \left(\frac{1}{\log_e x} \right) \int dx \right\} dx - \int \frac{1}{(\log_e x)^2} dx$	1
	$= \frac{x}{\log_e x} + \int \frac{1}{(\log_e x)^2} \frac{1}{x} \cdot x \cdot dx - \int \frac{1}{(\log_e x)^2} dx$	1
	$=\frac{x}{\log_{e} x} + \int \frac{1}{(\log_{e} x)^{2}} dx - \int \frac{dx}{(\log_{e} x)^{2}} = \frac{x}{\log_{e} x} + c;$	1
OR	where'c'is any arbitary constant of integration.	
29.(b)	$\int_{0}^{1} x \left(1-x\right)^{n} dx$	
	$= \int_0^1 (1-x)\{1-(1-x)\}^n dx, \left(as, \int_0^a f(x) dx = \int_0^a f(a-x) dx\right)$	1
	$=\int_0^1 x^n (1-x) dx$	
	$=\int_{-\infty}^{1}x^{n}dx-\int_{-\infty}^{1}x^{n+1}dx$	$\frac{1}{2}$
	$= \int_{0}^{1} x^{n} dx - \int_{0}^{1} x^{n+1} dx$ $= \frac{1}{n+1} [x^{n+1}]_{0}^{1} - \frac{1}{n+2} [x^{n+2}]_{0}^{1}$	
		$\frac{1}{2}$
	$=\frac{1}{n+1}-\frac{1}{n+2} = \frac{1}{(n+1)(n+2)}.$	1
30.	The feasible region determined by the constraints, $2x + y \ge 3$, $x + 2y \ge 6$, $x \ge 0$, $y \ge 0$ is as shown.	
L	Download from www.MsEducationTv.com Page 6	of 15

Download from www.MsEducationTv.com Page 7 of 15

Download from www.MsEducationTv.com

Page 8 of 15

$$\Rightarrow k \left(1 + \frac{1}{5} + \frac{1}{5^2} + \frac{1}{5^3} + \dots \right) = 1$$

$$\Rightarrow k \left(\frac{1}{1 - \frac{1}{5}} \right) = 1 \Rightarrow k = \frac{4}{5}$$

So, $P(X < 3) = P(X = 0) + P(X = 1) + P(X = 2)$
$$= \frac{4}{5} \left(1 + \frac{1}{5} + \frac{1}{5^2} \right) = \frac{4}{5} \left(\frac{25 + 5 + 1}{25} \right) = \frac{124}{125}.$$

1
Section -D

[This section comprises of solution of long answer type questions (LA) of 5 marks each]

32.

$$y = 20\cos 2x; \left\{\frac{\pi}{6} \le x \le \frac{\pi}{3}\right\}$$

$$(0,10)$$

$$X' = 0$$

$$(0,10)$$

$$(0,10)$$

$$(0,10)$$

$$(0,10)$$

$$(0,10)$$

$$(0,10)$$

$$(0,10)$$

$$(0,10)$$

$$(0,10)$$

$$(0,10)$$

$$(0,10)$$

$$(0,10)$$

$$(0,10)$$

$$(0,10)$$

$$(0,10)$$

$$(0,10)$$

$$(0,10)$$

$$(0,10)$$

$$(0,10)$$

$$(0,10)$$

$$(0,10)$$

$$(0,10)$$

$$(0,10)$$

$$(0,10)$$

$$(0,10)$$

$$(0,10)$$

$$(0,10)$$

$$(0,10)$$

$$(0,10)$$

$$(0,10)$$

$$(0,10)$$

$$(0,10)$$

$$(0,10)$$

$$(0,10)$$

$$(0,10)$$

$$(0,10)$$

$$(0,10)$$

$$(0,10)$$

$$(0,10)$$

$$(0,10)$$

$$(0,10)$$

$$(0,10)$$

$$(0,10)$$

$$(0,10)$$

$$(0,10)$$

$$(0,10)$$

$$(0,10)$$

$$(0,10)$$

$$(0,10)$$

$$(0,10)$$

$$(0,10)$$

$$(0,10)$$

$$(0,10)$$

$$(0,10)$$

$$(0,10)$$

$$(0,10)$$

$$(0,10)$$

$$(0,10)$$

$$(0,10)$$

$$(0,10)$$

$$(0,10)$$

$$(0,10)$$

$$(0,10)$$

$$(0,10)$$

$$(0,10)$$

$$(0,10)$$

$$(0,10)$$

$$(0,10)$$

$$(0,10)$$

$$(0,10)$$

$$(0,10)$$

$$(0,10)$$

$$(0,10)$$

$$(0,10)$$

$$(0,10)$$

$$(0,10)$$

$$(0,10)$$

$$(0,10)$$

$$(0,10)$$

$$(0,10)$$

$$(0,10)$$

$$(0,10)$$

$$(0,10)$$

$$(0,10)$$

$$(0,10)$$

$$(0,10)$$

$$(0,10)$$

$$(0,10)$$

$$(0,10)$$

$$(0,10)$$

$$(0,10)$$

$$(1,11)$$

$$(1,11)$$

$$(1,1,1)$$

$$(1,1,1)$$

$$(1,1,1)$$

$$(1,1,1)$$

$$(1,1,1)$$

$$(1,1,1)$$

$$(1,1,1)$$

$$(1,1,1)$$

$$(1,1,1)$$

$$(1,1,1)$$

$$(1,1,1)$$

$$(1,1,1)$$

$$(1,1,1)$$

$$(1,1,1)$$

$$(1,1,1)$$

$$(1,1,1)$$

$$(1,1,1)$$

$$(1,1,1)$$

$$(1,1,1)$$

$$(1,1,1)$$

$$(1,1,1)$$

$$(1,1,1)$$

$$(1,1,1)$$

$$(1,1,1)$$

$$(1,1,1)$$

$$(1,1,1)$$

$$(1,1,1)$$

$$(1,1,1)$$

$$(1,1,1)$$

$$(1,1,1)$$

$$(1,1,1)$$

$$(1,1,1)$$

$$(1,1,1)$$

$$(1,1,1)$$

$$(1,1,1)$$

$$(1,1,1)$$

$$(1,1,1)$$

$$(1,1,1)$$

$$(1,1,1)$$

$$(1,1,1)$$

$$(1,1,1)$$

$$(1,1,1)$$

$$(1,1,1)$$

$$(1,1,1)$$

$$(1,1,1)$$

$$(1,1,1)$$

$$(1,1,1)$$

$$(1,1,1)$$

$$(1,1,1)$$

$$(1,1,1)$$

$$(1,1,1)$$

$$(1,1,1)$$

$$(1,1,1)$$

$$(1,1,1)$$

$$(1,1,1)$$

$$(1,1,1)$$

$$(1,1,1)$$

$$(1,1,1)$$

$$(1,1,1)$$

$$(1,1,1)$$

$$(1,1,1)$$

$$(1,1,1)$$

$$(1,1,1)$$

$$(1,1,1)$$

$$(1,1,1)$$

$$(1,1,1)$$

$$(1,1,1)$$

$$(1,1,1)$$

$$(1,1,1)$$

$$(1,1,1)$$

$$(1,1,1)$$

$$(1,1,1)$$

$$(1,1,1)$$

$$(1,1,1)$$

$$(1,1,1)$$

$$(1,1,1)$$

$$(1,1,1)$$

$$(1,1,1)$$

$$(1,1,1)$$

$$(1,1,1)$$

$$(1,1,1)$$

$$(1,1,1)$$

$$(1,1,1)$$

$$(1,1,1)$$

$$(1,1,1)$$

$$(1,1,1)$$

$$(1,1,1)$$

$$(1,1,1)$$

$$(1,1,1)$$

$$(1,1,1)$$

$$(1,1,1)$$

$$(1,1,1)$$

$$(1,1,1)$$

$$(1,1,1)$$

$$(1,1,1)$$

$$(1,1,1)$$

$$(1,1,1)$$

$$(1,1,1)$$

$$(1,1,1)$$

$$(1,1,1)$$

$$(1,1,1)$$

$$(1,1,1)$$

$$(1,1,1)$$

$$(1,1,1)$$

$$(1,1,1)$$

$$(1,1,1)$$

$$(1,1,1)$$

$$(1,1,1)$$

$$(1,1,1)$$

$$(1,1,1)$$

$$(1,1,1)$$

$$(1,1,1)$$

$$(1,1,1)$$

$$(1,1,1)$$

$$(1,1$$

Download from www.MsEducationTv.com Page 9 of 15

Download from www.MsEducationTv.com Page 10 of 15

$$\begin{array}{|c|c|c|c|c|} \hline & \operatorname{Or}, \frac{d}{dx} \left(\frac{dy}{dx} \right) \frac{dx}{dx} = \cos e^{2}\theta \\ \hline & \operatorname{Or}, \frac{dx}{dx^{2}} \left(-c \sin \theta \right) = \csc^{2}\theta \\ \hline & \frac{d^{2}y}{dx^{2}} = -\frac{\csc^{2}\theta}{c} \\ \hline & \frac{d^{2}y}{dx^{2}} = -\frac{\csc^{2}\theta}{c} \\ \hline & \frac{d^{2}y}{dx^{2}} = -\frac{\csc^{2}\theta}{c} \\ \hline & \frac{d^{2}y}{dx^{2}} = \frac{1+\cot^{2}\theta |_{x}^{2}}{-\cos e^{2}\theta} = \frac{-c(\cos e^{2}\theta)^{2}}{\csc^{2}\theta} = -C, \\ \hline & \text{Which is constant and is independent of a and b.} \\ \hline & \frac{r}{e} - (-i - j - k) + \lambda(7i - 6j + k); \text{ where '}\lambda' \text{ is a scalar.}} \\ \hline & \frac{r}{r} - (si + sj + 7k) + \mu(i - 2j + k); \text{ where '}\lambda' \text{ is a scalar.}} \\ \hline & \frac{r}{r} - (si + sj + 7k) + \mu(i - 2j + k); \text{ where '}\lambda' \text{ is a scalar.}} \\ \hline & \frac{r}{r} = (-i - j - k) + \lambda(7i - 6j + k)(i) \text{ and} \\ \beta = (3i + 5j + 7k) + \mu(i - 2j + k)(ii) \\ \text{The given lines are non-parallel lines as vectors $7i - 6j + k$ and $i - 2j + k$ are not parallel. There is a anique line segment PQ (P lying on the (i) and Q on the other line(i)), which is a right angles to both the lines PQ is the shortest distance between the lines. \\ \text{Hence, the shortest possible distance between the lines $= PQ$.} \\ \text{Let the position vector of the point P lying on the line $= (-i - j - k) + \lambda(7i - 6j + k) where '\lambda' is a scalar, is (7\lambda - 1)i - (6\lambda + 1)j + (\lambda - 1)k, \text{ for some λ and the position vector of the point Q lying on the line r (3i + 5j + 7k) + \mu(i - 2j + k) where μ' is a scalar, is (\mu + 3)i + (-2\mu + 5)i + (\mu + 7)k, for some μ . Now, the vector $\overline{PQ} = \overline{QQ} - \overline{QP} = (\mu + 3 - 7\lambda + 1)i + (-2\mu + 5 + 6\lambda + 1)j + (\mu + 7 - \lambda + 1)k \\ i.e., P\overline{Q} = (\mu - 7\lambda + 4)i + (-2\mu + 6\lambda + 6)j + (\mu - \lambda + 8)k; (where '0' is the origin), is perpendicular to both the lines, so the vector $P\overline{Q}$ is perpendicular to both the lines, so the vector $P\overline{Q}$ is perpendicular to both the lines, so the vector $P\overline{Q}$ is perpendicular to both the lines, so the vector $P\overline{Q}$ is perpendicular to both the lines, so the vector $P\overline{Q}$ is perpendicular to both the lines, so the vector $P\overline{Q}$ is perpendicular to both the lines, so the vector $P\overline{$$$

Download from www.MsEducationTv.com Page 11 of 15

$$\frac{\&(\mu - 7\lambda + 4).1 + (-2\mu + 6\lambda + 6).(-2) + (\mu - \lambda + 8).1 = 0}{\Rightarrow 20\mu - 86\lambda = 0 \Rightarrow 10\mu - 43\lambda = 0.86\mu - 20\lambda = 0 \Rightarrow 3\mu - 10\lambda = 0}$$
So, the position vector of the points *P* and *Q* are $-i - j - k$ and $3i + 5j + 7k$ respectively.

$$\frac{PQ}{PQ} = 4i + 6j + 8k$$
 and

$$\frac{PQ}{PQ} = \sqrt{4^2 + 6^2 + 8^2} = \sqrt{116} = 2\sqrt{29}$$
 units.
OR
35.(b)

$$\frac{P(1,1)}{A} = \frac{P(1,1)}{PQ} = \frac{1}{\sqrt{4^2 + 6^2 + 8^2}} = \sqrt{116} = 2\sqrt{29}$$
 units.
OR
35.(b)

$$\frac{P(1,1)}{A} = \frac{P(1,2,1)}{PQ} = \frac{1}{\sqrt{4^2 + 6^2 + 8^2}} = \sqrt{116} = 2\sqrt{29}$$
 units.
I

$$\frac{P(1,1)}{A} = \frac{P(1,2,1)}{PQ} = \frac{1}{\sqrt{4^2 + 6^2 + 8^2}} = \sqrt{116} = 2\sqrt{29}$$
 units.
I

$$\frac{P(1,1)}{A} = \frac{P(1,2,1)}{PQ} = \frac{1}{\sqrt{4^2 + 6^2 + 8^2}} = \sqrt{116} = 2\sqrt{29}$$
 units.
I

$$\frac{P(1,1)}{A} = \frac{P(1,2,1)}{PQ} = \frac{1}{\sqrt{4^2 + 6^2 + 8^2}} = \sqrt{116} = 2\sqrt{29}$$
 units.
I

$$\frac{P(1,2,1)}{PQ} = \frac{1}{\sqrt{4^2 + 6^2 + 8^2}} = \sqrt{116} = 2\sqrt{29}$$
 units.
I

$$\frac{P(1,2,1)}{PQ} = \frac{1}{\sqrt{4^2 + 6^2 + 8^2}} = \sqrt{116} = 2\sqrt{29}$$
 units.
I

$$\frac{P(1,2,1)}{PQ} = \frac{1}{\sqrt{4^2 + 6^2 + 8^2}} = \sqrt{116} = 2\sqrt{29}$$
 units.
I

$$\frac{P(1,2,1)}{PQ} = \frac{1}{\sqrt{4^2 + 6^2 + 8^2}} = \sqrt{116} = 2\sqrt{29}$$
 units.
I

$$\frac{P(1,2,1)}{PQ} = \frac{1}{\sqrt{4^2 + 6^2 + 8^2}} = \sqrt{116} = 2\sqrt{29}$$
 units.
I

$$\frac{P(1,2,1)}{PQ} = \frac{1}{\sqrt{4^2 + 6^2 + 8^2}} = \sqrt{116} = 2\sqrt{29}$$
 units.
I

$$\frac{P(1,2,1)}{PQ} = \frac{1}{\sqrt{4^2 + 6^2 + 8^2}} = \sqrt{116} = 2\sqrt{29}$$
 units.
I

$$\frac{P(1,2,1)}{PQ} = \frac{1}{\sqrt{4^2 + 6^2 + 8^2}} = \sqrt{116} = 2\sqrt{29}$$
 units.
I

$$\frac{P(1,2,1)}{PQ} = \frac{1}{\sqrt{4^2 + 6^2 + 8^2}} = \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{2}}, \frac{2}{\sqrt{7}}, \frac{2}{\sqrt{7}}, \frac{1}{\sqrt{7}}, \frac{1}{\sqrt$$

Download from www.MsEducationTv.com Page 12 of 15

<i>x</i> – 1	y - 2	<u>z − 1</u>	x-1	y - 2	z-1	
32/7	$-\frac{-34}{7}$	12/7	16	-17	<u> </u>	

Section –E

[This section comprises solution of 3 case- study/passage based questions of 4 marks each with two sub parts. Solution of the first two case study questions have three sub parts (i),(ii),(iii) of marks 1,1,2 respectively. Solution of the third case study question has two sub parts of 2 marks each.)

36.	(i) $V = (40 - 2x)(25 - 2x)xcm^3$	1						
	(ii) $\frac{dV}{dx} = 4(3x - 50)(x - 5)$	1						
	(iii) (a) For extreme values $\frac{dV}{dx} = 4(3x - 50)(x - 5) = 0$							
	$\Rightarrow x = \frac{50}{3}$ or $x = 5$							
	$\frac{d^2V}{dx^2} = 24x - 260$	1/2						
	$\therefore \frac{d^2 v}{dx^2} \text{ at } x = 5 \text{ is} - 140 < 0$	1/2						
	$\therefore V \text{ is max } when x = 5$							
	(iii) OR	1/2						
	(b) For extreme values $\frac{dV}{dx} = 4(3x^2 - 65x + 250)$							
	$\frac{d^2V}{dx^2} = 4(6x - 65)$							
	$\frac{dV}{dx} at x = \frac{65}{6} \text{ exists and } \frac{d^2V}{dx^2} at x = \frac{65}{6} is 0.$	1,						
	$\frac{d^2V}{dx^2}$ at $x = \left(\frac{65}{6}\right)^-$ is negative and $\frac{d^2V}{dx^2}$ at $x = \left(\frac{65}{6}\right)^+$ is positive	¹ / ₂						
	$\therefore x = \frac{65}{6}$ is a point of inflection.	1/2						
37.	(i) Number of relations is equal to the number of subsets of the set $B \times G = 2^{n(B \times G)}$ = $2^{n(B) \times n(G)} = 2^{3 \times 2} = 2^{6}$	1						
	(Wheren(A) denotes the number of the elements in the finite set A)							
	(ii) Smallest Equivalence relation on G is $\{(g_1, g_1), (g_2, g_2)\}$	1						
	(iii) (a) (A) reflexive but not symmetric =							
	$\{(b_1, b_2), (b_2, b_1), (b_1, b_1), (b_2, b_2), (b_3, b_3), (b_2, b_3)\}.$							

Download from www.MsEducationTv.com Page 13 of 15

	So the minimum number of elements to be added are	
	$(b_1, b_1), (b_2, b_2), (b_3, b_3), (b_2, b_3)$	1
	{Note : it can be any one of the pair from, (b_3, b_2) , (b_1, b_3) , (b_3, b_1) in place of	
	$(\boldsymbol{b_2}, \boldsymbol{b_3}) \ \boldsymbol{also}$	
	(B) reflexive and symmetric but not transitive =	
	$\{(b_1, b_2), (b_2, b_1), (b_1, b_1), (b_2, b_2), (b_3, b_3), (b_2, b_3), (b_3, b_2) \}.$	
	So the minimum number of elements to be added are	1
	$(b_1, b_1), (b_2, b_2), (b_3, b_3), (b_2, b_3), (b_3, b_2)$	
	OR (iii) (b) One-one and onto function	
	$x^2 = 4y. \text{ let } y = f(x) = \frac{x^2}{4}$	
	Let $x_1, x_2 \in [0, 20\sqrt{2}]$ such that $f(x_1) = f(x_2) \Rightarrow \frac{x_1^2}{4} = \frac{x_1^2}{4}$	
	$\Rightarrow x_1^2 = x_2^2 \Rightarrow (x_1 - x_2)(x_1 + x_2) = 0 \Rightarrow x_1 = x_2 \text{ as } x_1, x_2 \in [0, 20\sqrt{2}]$ $\therefore f \text{ is one-one function}$	1
	Now, $0 \le y \le 200$ hence the value of y is non-negative	
	and $f(2\sqrt{y}) = y$	
	\therefore for any arbitrary $y \in [0, 200]$, the pre-image of y exists in $[0, 20\sqrt{2}]$ hence f is onto function.	1
38.	-	
30.	Let E_1 be the event that one parrot and one owl flew from cage $-I$	
	E_2 be the event that two parrots flew from Cage-I	
	A be the event that the owl is still in cage-I	
	(i) Total ways for A to happen	
	From cage I 1 parrot and 1 owl flew and then from Cage-II 1 parrot and 1 owl	
	From cage I 1 parrot and 1 owl flew and then from Cage-II 1 parrot and 1 owl	1
	From cage I 1 parrot and 1 owl flew and then from Cage-II 1 parrot and 1 owl flew back + From cage I 1 parrot and 1 owl flew and then from Cage-II 2 parrots	$\frac{1}{2}$
	From cage I 1 parrot and 1 owl flew and then from Cage-II 1 parrot and 1 owl flew back + From cage I 1 parrot and 1 owl flew and then from Cage-II 2 parrots flew back + From cage I 2 parrots flew and then from Cage-II 2 parrots came	—
	From cage I 1 parrot and 1 owl flew and then from Cage-II 1 parrot and 1 owl flew back + From cage I 1 parrot and 1 owl flew and then from Cage-II 2 parrots flew back + From cage I 2 parrots flew and then from Cage-II 2 parrots came back.	—
	From cage I 1 parrot and 1 owl flew and then from Cage-II 1 parrot and 1 owl flew back + From cage I 1 parrot and 1 owl flew and then from Cage-II 2 parrots flew back + From cage I 2 parrots flew and then from Cage-II 2 parrots came back. $=(5_{C_1} \times 1_{C_1})(7_{C_1} \times 1_{C_1}) + (5_{C_1} \times 1_{C_1})(7_{C_2}) + (5_{C_2})(8_{C_2})$ Probability that the owl is still in cage $-I = P(E_1 \cap A) + P(E_2 \cap A)$	—
	From cage I 1 parrot and 1 owl flew and then from Cage-II 1 parrot and 1 owl flew back + From cage I 1 parrot and 1 owl flew and then from Cage-II 2 parrots flew back + From cage I 2 parrots flew and then from Cage-II 2 parrots came back. $=(5_{c_1} \times 1_{c_1})(7_{c_1} \times 1_{c_1}) + (5_{c_1} \times 1_{c_1})(7_{c_2}) + (5_{c_2})(8_{c_2})$ Probability that the owl is still in cage -I = P(E ₁ \cap A) + P(E ₂ \cap A) $\frac{(5_{c_1} \times 1_{c_1})(7_{c_1} \times 1_{c_1}) + (5_{c_1} \times 1_{c_1})(7_{c_2}) + (5_{c_2})(8_{c_2})}{(5_{c_1} \times 1_{c_1})(7_{c_1} \times 1_{c_1}) + (5_{c_1} \times 1_{c_1})(7_{c_2}) + (5_{c_2})(8_{c_2})}$	2 1
	From cage I 1 parrot and 1 owl flew and then from Cage-II 1 parrot and 1 owl flew back + From cage I 1 parrot and 1 owl flew and then from Cage-II 2 parrots flew back + From cage I 2 parrots flew and then from Cage-II 2 parrots came back. $=(5_{C_1} \times 1_{C_1})(7_{C_1} \times 1_{C_1}) + (5_{C_1} \times 1_{C_1})(7_{C_2}) + (5_{C_2})(8_{C_2})$ Probability that the owl is still in cage $-I = P(E_1 \cap A) + P(E_2 \cap A)$	2

Download from www.MsEducationTv.com Page 14 of 15

(i) The probability that one parrot and the owl flew from Cage-I to Cage-II given that the owl is still in cage-I is $P\left(\frac{E_1}{A}\right)$ $P\left(\frac{E_1}{A}\right) = \frac{P(E_1 \cap A)}{P(E_1 \cap A) + P(E_2 \cap A)}$ (by Baye's Theorem)	$ \begin{array}{c} \frac{1}{2} \\ \frac{1}{2} \end{array} $
$=\frac{\frac{35}{420}}{\frac{315}{420}}=\frac{1}{9}$	1