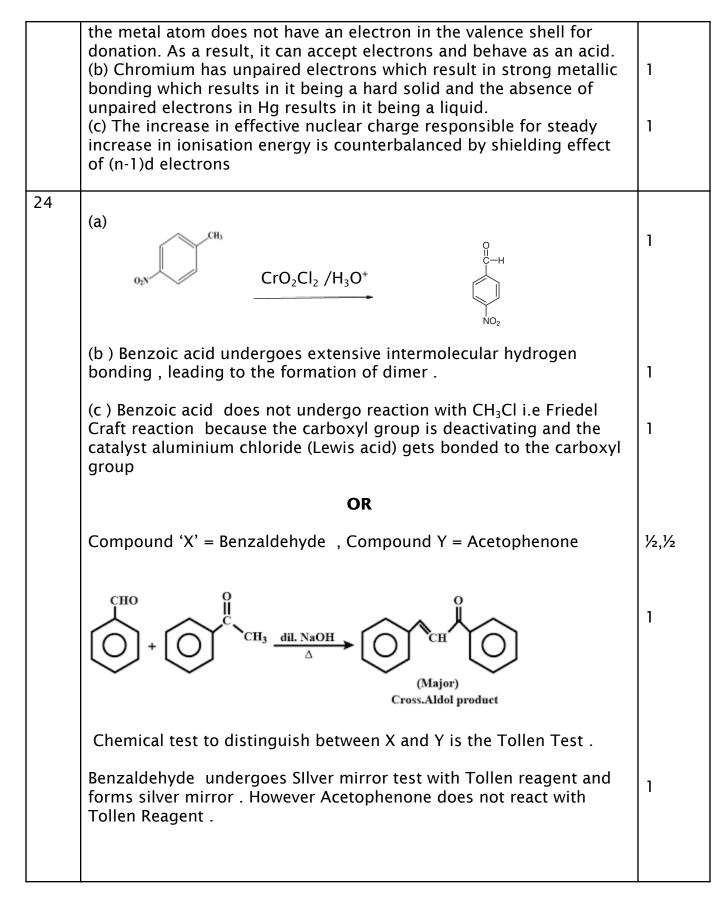
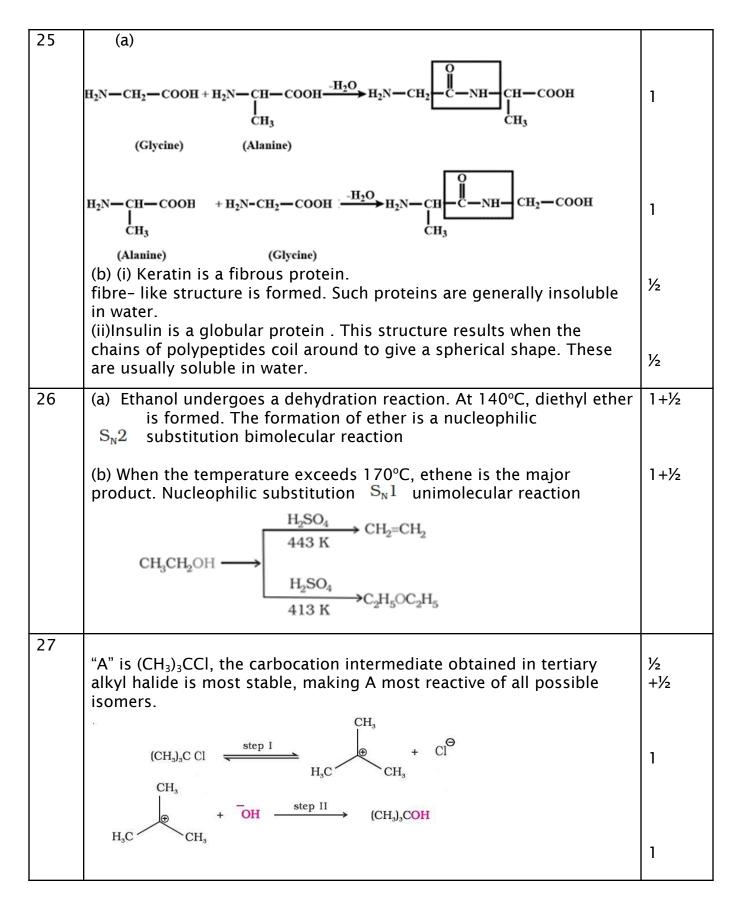
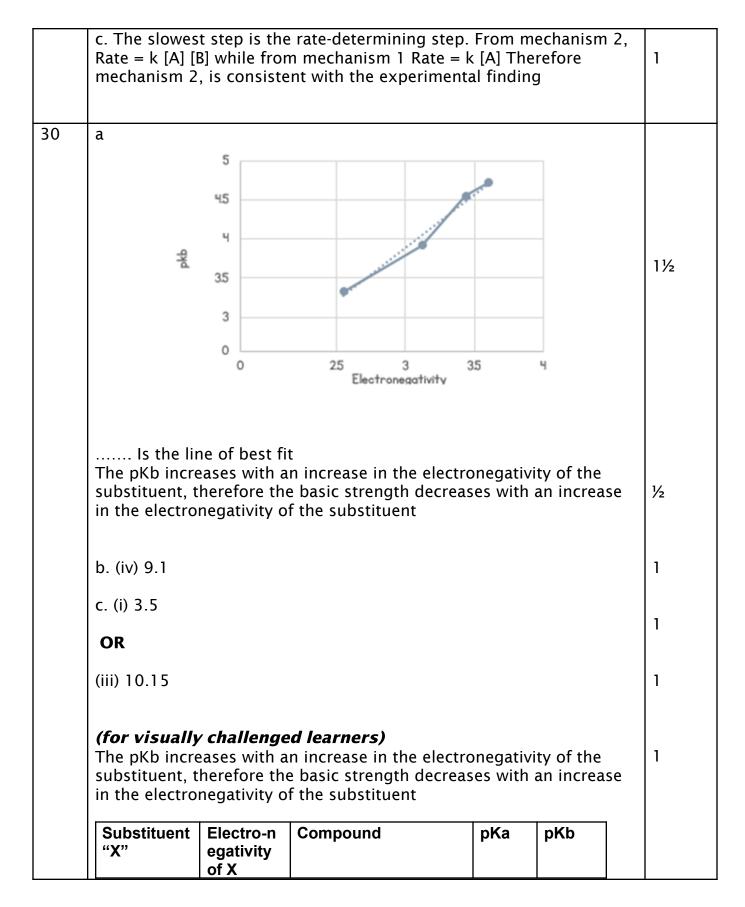
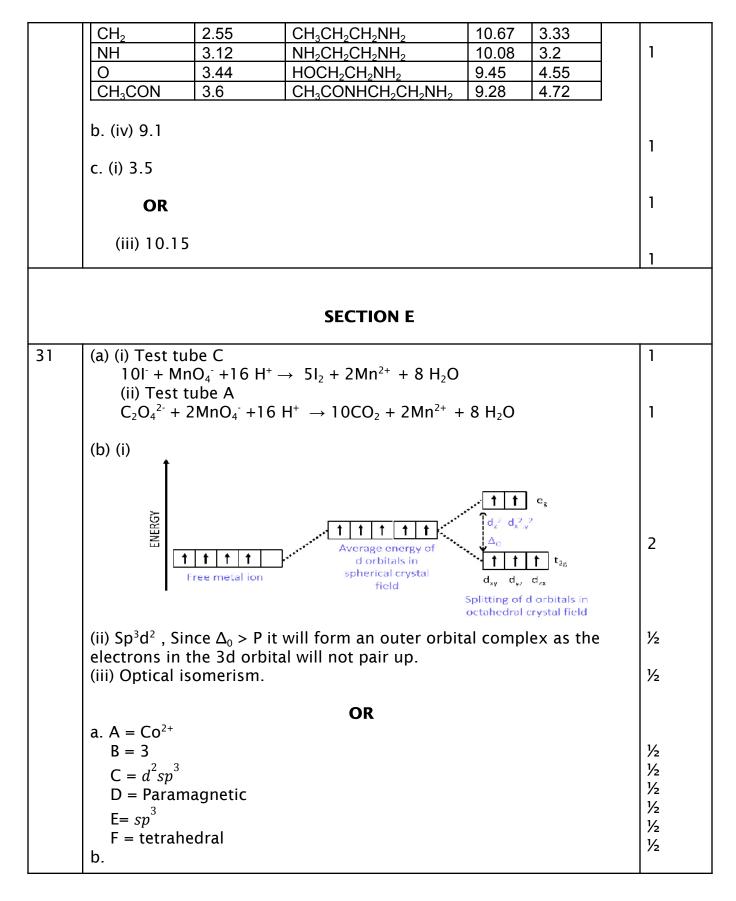
MARKING SCHEME SAMPLE PAPER (2024 -25)

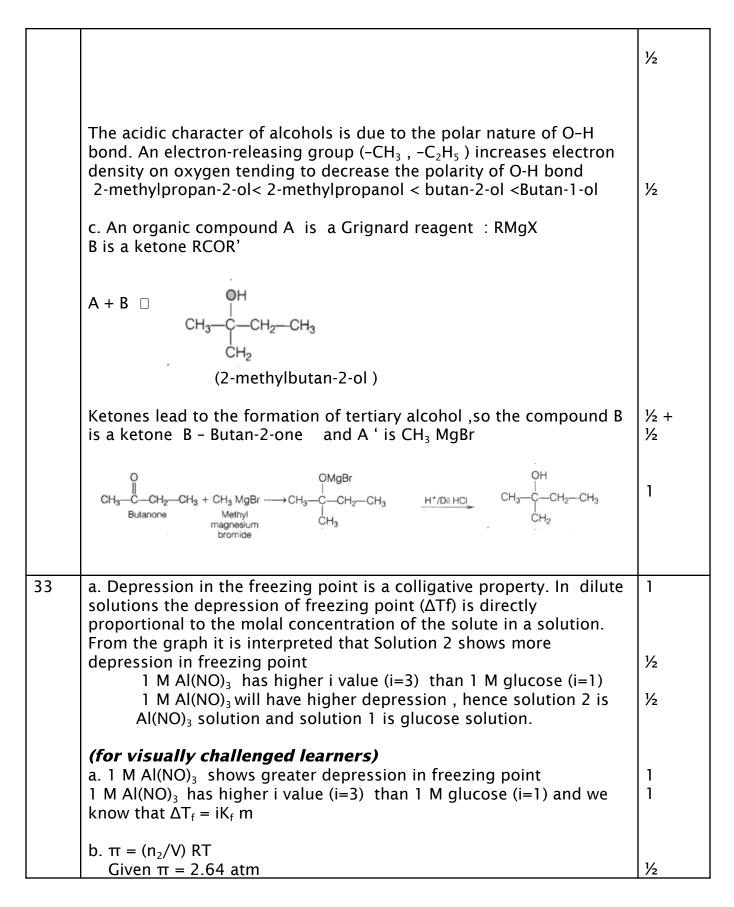

CHEMISTRY THEORY


(043)

	SECTION A		
1	(c) reacts with Benzenesulphonyl chloride to form a product that is insoluble in alkali	1	
2	(b)CH ₃ Cl The order followed is this CH ₃ I <ch<sub>3Br<ch<sub>3F< CH₃Cl, though F is most electronegative, the bond length is small as compared to C-Cl. Dipole moment is the product of the charge and the bond length.</ch<sub></ch<sub>	1	
3	(a) (i)-(C), (ii)-(B), (iii)-(A)	1	
4	 (d) 1 =Bromomethane, 2= 2-Bromo-2-methylpropane, 3=2- Bromobutane, 4= 1-Bromobutane (for visually challenged learners) 	1	
	d. 1-Bromobutane	1	
5	(c) the order of reaction is zero as the unit of k is molL ⁻¹ s ⁻¹ . Thus half life = $[R]_0 / 2k = 4.62 \times 10^{-2} / 2 \times 2.31 \times 10^{-2}$	1	
6	(b) Benzoic acid and ethanoic acid	1	
	C ₆ H ₅ COOCOCH <u>3 H2</u> C ₆ H ₅ COOH + CH3COOH		
7	(b) $X = [Co(NH_3)_4Cl_2]^+Cl^-, Y = 1:3$	1	
8	(b) Cellulose Starch contains only α glucose, sucrose contains α -D-glucose and β -D-fructose glucose, maltose contains α -D-glucose and cellulose is a polymer of β -D-glucose.	1	
9	(d) $Ti^{3+} < Cr^{3+} < Fe^{2+} < Mn^{2+}$	1	
	No. of unpaired electrons : Ti ³⁺ (1), Cr ³⁺ (3), Fe ²⁺ (4) and Mn ²⁺ (5) Paramagnetism depends on the number of unpaired electrons		
10	(d) It never goes to completion First order reaction [R] = [Ro] e ^{-kt} If [R]=0 then	1	


	$e^{-kt} = 0$, which is not possible for any finite value of t. Here, t is ∞ .		
11	(a) Nitrobenzene	1	
	NO ₂ H ₂ /Pd Ethanol		
12	(a)CH ₃ COCH ₃ Aldehyde and ketones give nucleophilic addition reactions. Other carbonyl compounds do not give nucleophilic addition reactions.		
13	(a) Both A and R are true and R is the correct explanation of A		
14	(d) A is false but R is true.	1	
	$\Lambda_m^{\circ} = \Lambda_m - A c^{\frac{1}{2}}$ is an incorrect equation, the correct equation is		
	$\Lambda_m = \Lambda_m^\circ - A \ c^{\frac{1}{2}}$		
15	(b) Both A and R are true but R is not the correct explanation of A. Due to the absence of a free aldehydic group, it does not give a reaction with $NaHSO_3$.	1	
16	(d)A is false but R is true. The half- life for a zero order reaction $t_{1/2} = [Ro]/2k$ where [Ro] is the initial concentration of the reactant.	1	
	SECTION B	<u> </u>	
17	(a) Solubility of gas is inversely proportional to the value of Henry's constant K_{H} . On increasing temperature nitrogen gas becomes less soluble because its K_{H} value increases.	¹ / ₂ 1/ ₂	
	(b) (ii)64.5 °C	1/2 1/2	
	Chloroform and acetone mixture show negative deviation from Raoult's law therefore, they form maximum boiling azeotrope at a specific composition. The boiling point of the mixture so obtained will be higher than the individual components.	/2	
	OR		
	(a) At higher altitudes i.e. in Srinagar the atmospheric pressure is	1	


	lower. The solubility of a gas in a liquid is directly proportional to the partial pressure of the gas over the solution, therefore, the carbon dioxide dissolved in water will be lesser at Srinagar making the soda go flat faster.	
	(b)Preservation of fruits by adding sugar/salt protects against bacterial action. Through osmosis, a bacterium on canned fruit loses water, shrivels and dies.	1
18	(a) Potassium diaquadioxalatochromate(III) hydrate (b) (i) Haemoglobin: Iron (ii) Vitamin B-12: Cobalt	1 1
19	(a) $Y(s) Y^{2+(aq)} X^{+}(aq) X(s)$ (b) ions are carrier of current in salt bridge (c) $Y(s) \rightarrow Y^{2+(aq)} + 2e^{-1}$	1 ½ ½
	(for visually challenged learners) a. Cathode: silver , Anode: Magnesium b. Mg + 2Ag ⁺ □ Mg ²⁺ + 2Ag	
20	(a)CH ₃ CH ₂ CN (major), CH ₃ CH ₂ NC (minor) (b) CH ₃ CH ₂ CHBrCH ₃ (major) CH ₃ CH ₂ CH ₂ CH ₂ Br (minor) (c) (CH ₃) ₂ C=CHCH ₃ (major) (CH ₃) ₂ CHCHCH ₂ (minor)	1/2+1/2 1/2+1/2 1/2+1/2 1/2+1/2
21	The carbonyl group present in glucose is aldehyde and the C_1 atom . Glucose gets oxidised to six-carbon carboxylic acid (gluconic acid) with COOH group at the C1 atom on reaction with a mild oxidising agent like bromine water. This indicates that the carbonyl group is present as an aldehydic group	¹ /2 , ¹ /2 1
	SECTION C	
22	(a) Product of electrolysis of Copper ChlorideCathode(-) $Cu^{2+} + 2e^{-} \rightarrow Cu(s)$ anode(+) $2Cl^{-} \rightarrow Cl_{2} + 2e^{-}$	1
	Product of electrolysis of concentrated Copper Sulphate Anode(+) $SO_4^{2^-} \rightarrow S_2O_8 + 2e^-$ Cathode (-) $Cu^{2^+} + 2e^- \rightarrow Cu(s)$	1
	(b) $\Lambda_{m}^{0}[AI_{2}(SO_{4})_{3}] = 2 \lambda_{m}^{0} (AI^{3+}) + 3 \lambda_{m}^{0} (SO_{4}^{2-})$	
23	(a) In the case of a lower oxide of a transition metal, the metal atom has some electrons present in the valence shell of the metal atom that are not involved in bonding. As a result, it can donate electrons and behave as a base whereas in higher oxide of a transition metal,	1



28	$E_{Cell} = E^{o}_{Cell} - \frac{2.303RT}{n F} \log Kc$				
	At 298 K				
	$E_{Cell} = E^{o}_{Cell} - \frac{0.0591}{n} \log Kc$	1/2			
	At equilibrium Ecell =0, n= 6	1/2			
	$E^{o}_{Cell} = \frac{0.0591}{n} \log Ke$				
	=0.059/6 log 4.617 x 10 ¹⁸⁴	1/2			
	= 0.00983 x 184.6644 = 1.8152	1/2			
	(ii) $E^{o}_{cell} = E^{o}_{Sn4+/Sn2+} - E^{o}_{Al3+/Al}$	1/2			
	$1.81 = -0.15 - E_{A 3+/A }^{0}$ $E_{A 3+/A }^{0} = -1.66 V$	1/2			
	SECTION D				
29	a. Rate = k [H ₂] [Br ₂] ^{1/2} order = $3/2$	1/2 1/2			
	units of k = $\frac{\text{molL}^{-1}\mathbf{s}^{-1}}{\text{mol}^{3/2}\mathbf{L}^{-3/2}}$ = mol^{-1/2}\mathbf{L}^{1/2}\mathbf{s}^{-1}	1			
	b. Rate = k [H ₂] [Br ₂] ^{1/2} If conc of Br ₂ is tripled Rate' = k [H ₂] [3Br ₂] ^{1/2} Rate' = $\sqrt{3}$ k [H ₂] [Br ₂] ^{1/2} Rate' = $\sqrt{3}$ Rate OR	1			
	Rate = k [H ₂] [Br ₂] ^{1/2} If conc of Br ₂ is tripled Rate' = 3 Rate= k [xH ₂] [Br ₂] ^{1/2} 3 Rate = k [x H ₂] [Br ₂] ^{1/2} x = 3, the concentration of H ₂ is tripled	1			

	(i) $Cr_2O_7^{2-} + 8 H^+ + 3 H_2S \rightarrow 2 Cr^{3+} + 3S + 7 H_2O$	1		
	(ii) $\operatorname{Cr}_{2}\operatorname{O}_{7}^{2^{-}} + 14 \operatorname{H}^{+} + 6 \operatorname{Fe}^{2^{+}} \rightarrow 2 \operatorname{Cr}^{3^{+}} + 6 \operatorname{Fe}^{3^{+}} + 7 \operatorname{H}_{2}\operatorname{O}$	1		
32	a. (i) The reaction of ethanol with acetyl chloride is carried out in the presence of pyridine . Pyridine is a strong organic base .The function of pyridine is to remove HCl formed in the reaction.	1		
	(ii) The electron releasing groups, such as alkyl groups, in general, do not favour the formation of phenoxide ion resulting in decrease in acid strength. Cresols, for example, are less acidic than phenol.	1		
	b. C_2H_5Br and $CH_3CH_2CH(CH_3)CH_2CH_2ONa$ yields 2- ethoxy-3-methylpentane	1		
	c. (i) (H_3) (H_3) (H_4)	1		
	(ii) benzoic acid			
	(ii) NO_2 HNO_3/H_2SO_4 Benzene nitrobenzene NO_2 $CH_3 - C - Cl$ $AlCl_3$ O $CH_3 - C - Cl$ O O $CH_3 - C - Cl$ O O O $CH_3 - C - Cl$ O O O O O O O O	1		
	OR			
	a. Acetic acid will give HVZ reaction. Carboxylic acids having an α-hydrogen are halogenated at the	1∕₂		
	α -position on treatment with chlorine or bromine in the presence of a small amount of red phosphorus to give α -halo carboxylic acids.	1		
	CH ₃ COOH Br ₂ /red P CH ₂ BrCOOH	1/2		
	b. Isomers of butanol are: Butan-1-ol , butan-2-ol , 2-methylpropanol , 2-methylpropan-2-ol .			
	Acidic strength in isomeric alcohols varies as follows			
	R R			

Let $V_1 = V$ $V_2 = 5V$ (On dilution	by 5 times)		
$\frac{\pi 1}{\pi 2} = \frac{(n/V_1)}{(n/V_2)}$			1
$\frac{2.64}{\pi 2} = \frac{(n/V)}{(n/5V)}$			
π 2 =0.528 atm Osmotic pressure is dir	rectly proportio	nal to temperature.	1/2 1/2
The osmotic pressure of the temperature.	of cane sugar ca	In be decreased by decreasing	1/2
	0	R	
a. While giving intravenous injection to the patients , utmost care of			1
b.	2C ₆ H ₅ OH> (C ₆ H ₅ OH) ₂		
Initial concentration :	С	0	
Final concentration association .	C (1-α)	$C\alpha/n$, where α is degree of	1/2
Experimentally, phenol Hence $\alpha = 0.73$. Relation between i (van $\alpha=(1-i)/(1-n)$, where n association is taking pl	nt hoff factor) a n for phenol = ½		1/2
Substituting the 0.73=(1-i)/(-0.5)	values :		

i=1- 0.73/2 i= 0.635	1/2
Depression in freezing point can be calculated as: $\Delta T_{f} = iK_{f} m$ $= iK_{f} (w_{b} / M_{b} \times w_{a})$ $K_{f} = 5.12 \text{ K Kg/mol, } w_{b} = 2 \times 10^{-2} \text{ kg} = 20 \text{ g, } w_{a} = 1 \text{ kg } M_{b} = 94$ $\Delta T_{f} = (0.635 \times 5.12 \times 20 / (94))$ $= 0.691 \text{ K}$	1 ½