SAMPLE QUESTION PAPER Class X Session 2024-25 MATHEMATICS STANDARD (Code No.041)

TIME: 3 hours

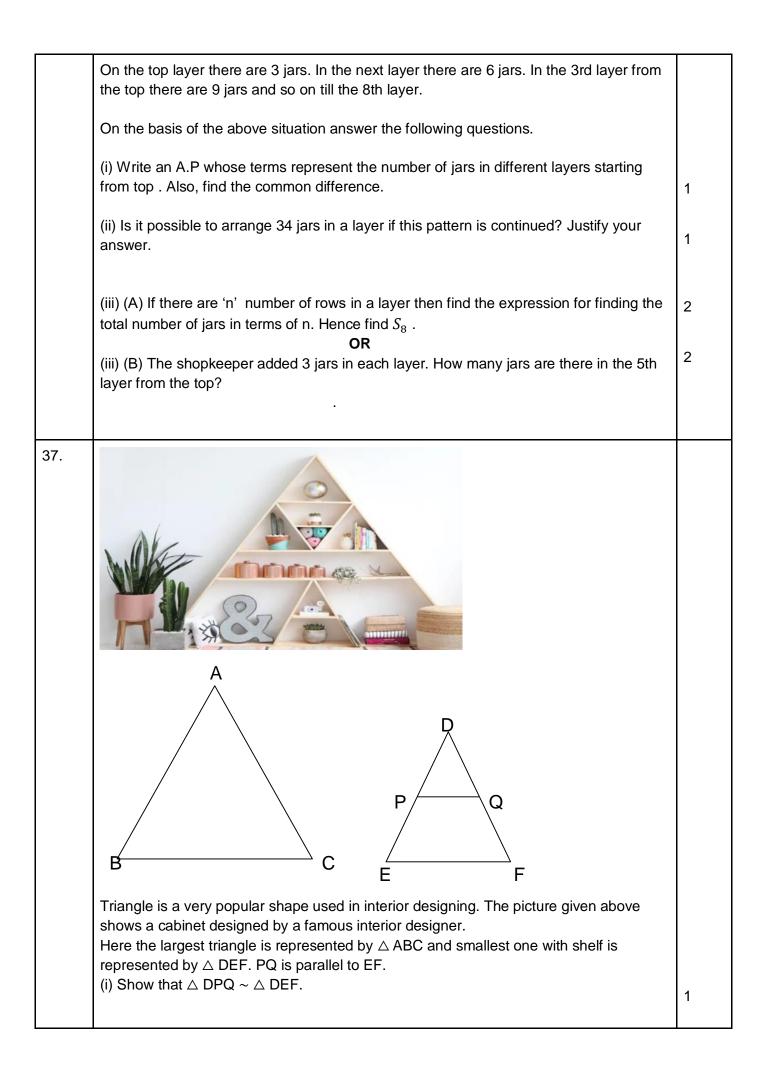
MAX.MARKS: 80

General Instructions:

Read the following instructions carefully and follow them:

- 1. This question paper contains 38 questions.
- 2. This Question Paper is divided into 5 Sections A, B, C, D and E.
- **3.** In Section A, Questions no. 1-18 are multiple choice questions (MCQs) and questions no. 19 and 20 are Assertion- Reason based questions of 1 mark each.
- 4. In Section B, Questions no. 21-25 are very short answer (VSA) type questions, carrying 02 marks each.
- 5. In Section C, Questions no. 26-31 are short answer (SA) type questions, carrying 03 marks each.
- 6. In Section D, Questions no. 32-35 are long answer (LA) type questions, carrying 05 marks each.
- **7.** In Section E, Questions no. 36-38 are case study based questions carrying 4 marks each with sub parts of the values of 1, 1 and 2 marks each respectively.
- 8. All Questions are compulsory. However, an internal choice in 2 Question of Section B, 2 Questions of Section C and 2 Questions of Section D has been provided. An internal choice has been provided in all the 2 marks questions of Section E.
- 9. Draw neat and clean figures wherever required.
- **10.** Take π =22/7 wherever required if not stated.
- **11.** Use of calculators is not allowed.

			Section A		
		Section A con	sists of 20 questions of	1 mark each.	
1.	(4,-20) and (6		the polynomial are	the points (-6,0), (0, -30), D) - 6,6	1
2.	The value of inconsistent, A) -10	•	tem of equations 3x-ky= ⁻ C) 5	7 and 6x+ 10y =3 is D) 7	1
3.	 Which of the following statements is not true? A) A number of secants can be drawn at any point on the circle. B) Only one tangent can be drawn at any point on a circle. C) A chord is a line segment joining two points on the circle D) From a point inside a circle only two tangents can be drawn. 				
4.	If nth term of A) 7	an A.P. is 7n-4 the B) 7n	n the common difference C) - 4	e of the A.P. is D) 4	1


5.	The radius of the base of a right circular cone and the radius of a sphere are each 5 cm in length. If the volume of the cone is equal to the volume of the sphere then the height of the cone is								
	A) 5 cm	B) 20	cm	C) 10 cm	I	D) 4 cm			
6.	If $\tan\theta = \frac{5}{2} \operatorname{then} \frac{4\sin\theta + \cos\theta}{4\sin\theta - \cos\theta}$ is equal to A) $\frac{11}{9}$ B) $\frac{3}{2}$ C) $\frac{9}{11}$ D) 4								
7.	In the given figure, a tangent has been drawn at a point P on the circle centred a								
	If ∠ TPQ= 110 A) 110 ⁰	0 ⁰ then ∠POQ	is equal to B) 70 ⁰	C) 1	.40 ⁰	D)55 ⁰			
8.	A quadratic pc A) $x^2 - 5$	blynomial havi $5\sqrt{2} \times +1$	ing zeroes B) 8x ² - 20	$\sqrt{\frac{5}{2}}$ and $\sqrt{\frac{5}{2}}$ is C) $15x^2 - 6$	5 D) x ²	- 2√5 x -1	1		
9.	Consider the f	requency dist	ribution of 45	observations.			1		
	Class	0-10	10-20	20-30	30-40	40-50			
	Frequency	5	9	15	10	6			
	The upper limi A) 20		lass is B) 10	C) 30		D) 40			
10.	O is the point of intersection of two chords AB and CD of a circle. $\begin{array}{c} & & & \\ \hline D & & \\ \hline $								

11.	The roots of the quadratic equation $x^2 + x - 1 = 0$ areA) Irrational and distinctB) not realC) rational and distinctD) real and equal						
12.	If $\theta = 30^{\circ}$ then the A)1	the value of $3\tan\theta$ i B) $\frac{1}{\sqrt{3}}$	s C) $\frac{3}{\sqrt{3}}$	(D) not defined	1		
13.	hemisphere (in sc		$s \frac{396}{7} cm^3$. The total so C) $\frac{549}{7}$	urface area of the solid D) $\frac{604}{7}$	1		
14.	drawn at random.	-	ue, 11 are green and at drawn ball is white i C) $\frac{11}{24}$	the rest are white. One ball is n colour is D) $\frac{5}{8}$	1		
15.	The point on the A) (0, 0)	(- axis nearest to th B) (-4, 0)		D) (\[\] 1, 0)	1		
16.	Which of the follor A) Median	wing gives the mide B) Mean	dle most observation C) Range	of the data? D) Mode	1		
17.	A point on the x-axis divides the line segment joining the points A(2, -3) and B(5, 6) in the ratio 1:2. The point is A) (4, 0) B) $(\frac{7}{2}, \frac{3}{2})$ C) (3, 0) D) (0,3)						
18.	A card is drawn fr face card is $A) \frac{3}{13}$	om a well shuffled B) $\frac{1}{2}$	deck of playing cards C) $\frac{3}{52}$. The probability of getting red D) $\frac{3}{26}$	1		
	 DIRECTION: In the question number 19 and 20, a statement of Assertion (A) is followed by a statement of Reason (R). Choose the correct option A)Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A) B)Both assertion (A) and reason (R) are true and reason (R) is not the correct explanation of assertion (A) C)Assertion (A) is true but reason (R) is false. D)Assertion (A) is false but reason (R) is true. 						
19.	Assertion (A): HCF of any two consecutive even natural numbers is always 2. Reason (R): Even natural numbers are divisible by 2.						
20.			of a circle is reduced t ctor remains the same	to its half and angle is e.	1		

	Reason (R): The length of the arc subtending angle θ at the centre of a circle of radius r						
	$=\frac{\Pi r\theta}{180}.$						
	Section B						
	Section B consists of 5 questions of 2 marks each.						
21.	 (A)Find the H.C.F and L.C.M of 480 and 720 using the Prime factorisation method. OR (A) The H.C.F of 85 and 238 is expressible in the form 85m -238. Find the value of m. 	2					
22.	 (A) Two dice are rolled together bearing numbers 4, 6, 7, 9, 11, 12. Find the probability that the product of numbers obtained is an odd number OR (B) How many positive three digit integers have the hundredths digit 8 and unit's digit 5? Find the probability of selecting one such number out of all three digit numbers. 	2					
23.	Evaluate: $\frac{2sin^{2}60^{o} - tan^{2}30^{o}}{sec^{2} 45^{o}}$	2					
24.	Find the point(s) on the x-axis which is at a distance of $\sqrt{41}$ units from the point (8, -5).	2					
25.	Show that the points A(-5,6), B(3, 0) and C(9, 8) are the vertices of an isosceles triangle.	2					
	Section C						
	Section C consists of 6 questions of 3 marks each.						
26.	(A) In \triangle ABC, D, E and F are midpoints of BC,CA and AB respectively. Prove that \triangle FBD ~ \triangle DEF and \triangle DEF ~ \triangle ABC A F B D C OR	3					
	(B) In ∆ABC, P and Q are points on AB and AC respectively such that PQ is parallel to BC.						

	Prove that the median AD drawn from A on BC bisects PQ.						
27.	The sum of two numbers is 18 and the sum of their reciprocals is 9/40. Find the numbers.	3					
28.	If α and β are zeroes of a polynomial $6x^2$ -5x+1 then form a quadratic polynomial whose zeroes are α^2 and β^2 .	3					
29.	If $\cos\theta + \sin\theta = 1$, then prove that $\cos\theta - \sin\theta = \pm 1$	3					
30.	(A) The minute hand of a wall clock is 18 cm long. Find the area of the face of the clock described by the minute hand in 35 minutes. OR	3					
	(B) AB is a chord of a circle centred at O such that $\angle AOB=60^{\circ}$. If OA = 14 cm						
	then find the area of the minor segment. (take $\sqrt{3}$ =1.73)						
31.	Prove that $\sqrt{3}$ is an irrational number.	3					
	Section D						
	Section D consists of 4 questions of 5 marks each						
32.	 (A) Solve the following system of linear equations graphically: x+2y = 3, 2x-3y+8 = 0 OR (B) Places A and B are 180 km apart on a highway. One car starts from A and 	5					
	another from B at the same time. If the car travels in the same direction at						

	different speeds, they meet in 9 hours. If they travel towards each other with the same speeds as before, they meet in an hour. What are the speeds of the two cars?									
33.	Prove that the lengths of tangents drawn from an external point to a circle are equal. Using above result, find the length BC of \triangle ABC. Given that, a circle is inscribed in \triangle ABC touching the sides AB, BC and CA at R, P and Q respectively and AB= 10 cm, AQ= 7cm ,CQ= 5cm.								5	
34.	A boy whose eye level is 1.35 m from the ground, spots a balloon moving with the w in a horizontal line at some height from the ground. The angle of elevation of the balloon from the eyes of the boy at an instant is 60° . After 12 seconds, the angle of elevation reduces to 30° . If the speed of the wind is $3m/s$ then find the height of the balloon from the ground. (Use $\sqrt{3}$ = 1.73)								of the angle of	nd 5
35.			•			a:				5
35.	Find the m	iean and	d median	of the fo	llowing dat		05 1	105 110		5
35.		1000 1000 1000 1000 1000 1000 1000 100	d median			a: 100-1 18		105-110	110-115 25	5
35.	Find the m Class frequency The month Monthly Expendit ure (in Rs.)	1000- 1500	1 median 0 2 nditure o 1500- 2000	of the fo 90-95 22 n milk in 2 2000- 2500	llowing dat 95-100 20 0R 200 familie 2500- 3000	100-1 18 s of a Hous 3000- 3500	sing Sor 3500- 4000	20 ciety is giv 4000- 4500	110-115 25 ren below 4500- 5000	5
35.	Find the m Class frequency The month Monthly Expendit ure (in Rs.) Number of families	1000- 1500 24	1 median 0 9 2 1500- 2000 40	of the fo 90-95 22 n milk in 2 2000- 2500 33	Ilowing dat 95-100 20 OR 200 familie 2500- 3000 x	100-1 18 s of a Hous 3000- 3500 30	2 sing So 3500-	20 ciety is giv 4000-	110-115 25 ren below 4500-	5
35.	Find the m Class frequency The month Monthly Expendit ure (in Rs.) Number of	1000- 1500 24	1 median 0 9 2 1500- 2000 40	of the fo 90-95 22 n milk in 2 2000- 2500 33	llowing dat 95-100 20 0R 200 familie 2500- 3000 x mean exp	100-1 18 s of a Hous 3000- 3500 30	sing Sor 3500- 4000	20 ciety is giv 4000- 4500	110-115 25 ren below 4500- 5000	5
35.	Find the m Class frequency The month Monthly Expendit ure (in Rs.) Number of families	1000- 1500 24	1 median 0 9 2 1500- 2000 40	of the fo 90-95 22 n milk in 2 2000- 2500 33	llowing dat 95-100 20 0R 200 familie 2500- 3000 x mean exp	100-1 18 s of a Hous 3000- 3500 30	sing Sor 3500- 4000	20 ciety is giv 4000- 4500	110-115 25 ren below 4500- 5000	5
35.	Find the m Class frequency The month Monthly Expendit ure (in Rs.) Number of families Find the va	alue of x on E co	I median 0 9 1500- 2000 40 and also nsists of	of the fol 90-95 22 n milk in 2 2000- 2500 33 o find the of 3 case	Ilowing dat 95-100 20 OR 200 familie 2500- 3000 x mean exp Sec e study b	100-1 18 s of a Hous 3000- 3500 30	sing Sou 3500- 4000 22 stions	20 ciety is giv 4000- 4500 16 0f 4 mar	110-115 25 en below 4500- 5000 7 7 ks each.	

	(ii) If DP= 50 cm and PE = 70 cm then find $\frac{PQ}{EF}$.	1				
	(iii) (A) If $2AB = 5DE$ and $\triangle ABC \sim \triangle DEF$ then show that $\frac{perimeter of \triangle ABC}{perimeter of \triangle DEF}$ is constant. OR (iii) (B) If AM and DN are medians of triangles ABC and DEF respectively then prove					
	that $\triangle ABM \sim \triangle DEN$.	2				
38.	Metallic silos are used by farmers for storing grains. Farmer Girdhar has decided to build a new metallic silo to store his harvested grains. It is in the shape of a cylinder mounted by a cone. Dimensions of the conical part of a silo is as follows: Radius of base = 1.5 m Height = 2 m Dimensions of the cylindrical part of a silo is as follows: Radius = 1.5 m Height = 7 m					
	On the basis of the above information answer the following questions.(i) Calculate the slant height of the conical part of one silo.	1				
	(ii) Find the curved surface area of the conical part of one silo.	1				
	(iii)(A) Find the cost of metal sheet used to make the curved cylindrical part of 1 silo at the rate of ₹2000 per m^2 .	2				
	(iii) (B) Find the total capacity of one silo to store grains.	2				