
#### Marking Scheme Class X Session 2024-25 MATHEMATICS STANDARD (Code No.041)

TIME: 3 hours

MAX.MARKS: 80

| Q.No. | Section A                                                       | Marks |
|-------|-----------------------------------------------------------------|-------|
| 1.    | D) -6,6                                                         | 1     |
| 2.    | B) -5                                                           | 1     |
| 3.    | D) From a point inside a circle only two tangents can be drawn. | 1     |
| 4.    | A) 7                                                            | 1     |
| 5.    | B) 20 cm                                                        | 1     |
| 6.    | A) <sup>11</sup> / <sub>9</sub>                                 | 1     |
| 7.    | <b>C)</b> 140 <sup>0</sup>                                      | 1     |
| 8.    | B) 8 <i>x</i> <sup>2</sup> - 20                                 | 1     |
| 9.    | C) 30                                                           | 1     |
| 10.   | B) isosceles and similar                                        | 1     |
| 11.   | A) Irrational and distinct                                      | 1     |
| 12.   | C) $\frac{3}{\sqrt{3}}$                                         | 1     |
| 13.   | B) $\frac{594}{7}$                                              | 1     |
| 14.   | B) $\frac{3}{8}$                                                | 1     |
| 15.   | B) (-4, 0)                                                      | 1     |
| 16.   | A) median                                                       | 1     |
| 17.   | C) (3,0)                                                        | 1     |
| 18.   | D) $\frac{3}{26}$                                               | 1     |
| 19.   | В)                                                              | 1     |
| 20.   | D)                                                              | 1     |

|         | Section B                                                                                                                                                                                                                           |            |  |  |  |  |
|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--|--|--|--|
| 21. (A) | $480 = 2^5 \times 3 \times 5$<br>720 = 2 <sup>4</sup> × 3 <sup>2</sup> × 5                                                                                                                                                          | 1/2<br>1/2 |  |  |  |  |
|         | LCM (480,720) = $2^5 \times 3^2 \times 5 = 1440$                                                                                                                                                                                    |            |  |  |  |  |
|         | HCF (480, 720) = 2 <sup>4</sup> x 3x 5 = 240                                                                                                                                                                                        |            |  |  |  |  |
|         | OR                                                                                                                                                                                                                                  |            |  |  |  |  |
| (B)     | 85 = 5x17, 238 = 2x7x17<br>HCF( 85, 238) = 17                                                                                                                                                                                       | 1          |  |  |  |  |
|         | 17 = 85xm -238<br>m = 3                                                                                                                                                                                                             | 1          |  |  |  |  |
| 22.(A)  | Total number of possible outcomes = 6x6=36<br>For a product to be odd, both the numbers should be odd.<br>Favourable outcomes are (7,7) (7,9) (7,11) (9,7) (9,9) (9, 11) (11,7) (11,9)<br>(11,11)<br>no. of favourable outcomes = 9 | 1/2        |  |  |  |  |
|         | P (product is odd) = $\frac{9}{36}$ Or $\frac{1}{4}$                                                                                                                                                                                | 1<br>½     |  |  |  |  |
|         | OR                                                                                                                                                                                                                                  |            |  |  |  |  |
| (B)     | Total number of three-digit numbers = 900.<br>Numbers with hundredth digit 8 & and unit's digit 5 are 805,815,                                                                                                                      | 1/2        |  |  |  |  |
|         | 825,,895<br>Number of favourable outcomes = 10                                                                                                                                                                                      | 1          |  |  |  |  |
|         | P(selecting one such number) = $\frac{10}{900}$ Or $\frac{1}{90}$                                                                                                                                                                   | 1/2        |  |  |  |  |
| 23.     | $2(\frac{\sqrt{3}}{2})^2 - (\frac{1}{\sqrt{2}})^2$                                                                                                                                                                                  | 1 ½        |  |  |  |  |
|         | $\frac{\frac{2}{\sqrt{2}}}{\left(\sqrt{2}\right)^2}$                                                                                                                                                                                |            |  |  |  |  |
|         | $\frac{2 \left(\frac{\sqrt{3}}{2}\right)^2 - \left(\frac{1}{\sqrt{3}}\right)^2}{\left(\sqrt{2}\right)^2} = \frac{7}{12}$                                                                                                            | 1⁄2        |  |  |  |  |
| 24      | Let the required point be (x,0)                                                                                                                                                                                                     | 1/2        |  |  |  |  |
|         | $\sqrt{(8-x)^2 + 25} = \sqrt{41}$<br>=> $(8-x)^2 = 16$<br>=> $8 - x = \pm 4$                                                                                                                                                        | 1⁄2        |  |  |  |  |
|         | $=> 8 - x = \pm 4$<br>=> x = 4, 12                                                                                                                                                                                                  |            |  |  |  |  |
|         | Two points on the x-axis are (4,0) & (12,0).                                                                                                                                                                                        | 1          |  |  |  |  |



|        | ⊿ AQR ~ ⊿ ACD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|        | AQ = RQ (ii)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|        | $=>\frac{AQ}{AC}=\frac{RQ}{DC}\dots\dots(ii)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1   |
|        | Now, $\frac{AP}{AB} = \frac{AQ}{AC}$ (iii)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |
|        | AB AC PR RO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4   |
|        | Using (i), (ii) & (iii), $\frac{PR}{BD} = \frac{RQ}{DC}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1   |
|        | But, $BD = DC$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |
|        | => PR = RQ or AD bisects PQ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |
| 27.    | Let the numbers be x and 18-x.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1/2 |
| 27.    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1   |
|        | $\frac{1}{x} + \frac{1}{18 - x} = \frac{9}{40}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |
|        | $= 18 \times 40 = 9x(18 - x)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |
|        | $=> x^2 - 18 x + 80 = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |
|        | => (x-10)(x-8) = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1   |
|        | => <i>x</i> =10, 8.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |
|        | => 18- <i>x</i> =8, 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1/2 |
|        | Hence two numbers are 8 and 10.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |
| 28.    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1   |
|        | From given polynomial $\alpha + \beta = \frac{5}{6}$ , $\alpha\beta = \frac{1}{6}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |
|        | $\alpha^2 + \beta^2 = (\frac{5}{6})^2 - 2 \times \frac{1}{6} = \frac{13}{36}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1   |
|        | (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) = (6) |     |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1/2 |
|        | And $\alpha^2 \beta^2 = (\frac{1}{6})^2 = \frac{1}{36}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |
|        | 6 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |
|        | 2 13 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |
|        | $x^2 - \frac{13}{36}x + \frac{1}{36}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1/2 |
|        | $\Rightarrow$ Required polynomial is 36x <sup>2</sup> -13 x+1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | /2  |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |
| 29.    | $(\cos\theta + \sin\theta)^{2} + (\cos\theta - \sin\theta)^{2} = 2(\cos^{2}\theta + \sin^{2}\theta) = 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |
| 20.    | $(\cos\theta + \sin\theta)^{2} + (\cos\theta - \sin\theta)^{2} = 2(\cos\theta + \sin\theta)^{2} = 2$ $=> (1)^{2} + (\cos\theta - \sin\theta)^{2} = 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1 ½ |
|        | $=> (\cos\theta - \sin\theta)^2 = 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1   |
|        | $\Rightarrow \cos\theta - \sin\theta = \pm 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1/2 |
| 20 (A) | Angle deperihed by minute hand in 5 min 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |
| 30.(A) | Angle described by minute hand in 5 min = $30^{\circ}$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |
|        | length of minute hand =18 cm = r.<br>Area swept by minute hand in 35 minutes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|        | $= \left(\frac{22}{7} \times 18 \times 18 \times \frac{30}{360}\right) \times 7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2   |
|        | $= (\frac{1}{7} \times 10 \times 10 \times \frac{1}{360}) \times 7$<br>= 594 cm <sup>2</sup> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1   |
|        | $= 594  cm^{-}$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |
| (B)    | Area of minor segment = Ar. Sector OAB- Ar. ⊿ OAB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |
|        | $=\frac{90}{360} \times \frac{22}{7} \times 14 \times 14 - \frac{\sqrt{3}}{4} \times 14 \times 14$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2   |
|        | $= 69.23 \text{ cm}^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1   |
|        | - 00.20 011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |

| 31.    | Let $\sqrt{3}$ be a rational number.<br>$\therefore \sqrt{3} = \frac{p}{q}$ , where q $\neq 0$ and let p & q be co-prime.<br>$3q^2 = p^2 \Rightarrow p^2$ is divisible by $3 \Rightarrow p$ is divisible by $3 =$ (i)<br>$\Rightarrow p = 3a$ , where 'a' is some integer<br>$9a^2 = 3q^2 \Rightarrow q^2 = 3a^2 \Rightarrow q^2$ is divisible by $3 \Rightarrow q$ is divisible by $3 =$ (ii)<br>(i) and (ii) leads to contradiction as 'p' and 'q' are co-prime. | 1⁄2<br>1<br>1<br>1⁄2     |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
|        | Section D                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |
| 32.(A) | x+2y=3, 2x-3y+8=0<br>Correct graph of each equation<br>Solution x=-1 and y=2                                                                                                                                                                                                                                                                                                                                                                                       | 2+2 = 4<br>1             |
|        | OR                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                          |
| (B)    | Let car I starts from A with speed x km/hr and car II Starts from B with speed y km/hr (x>y)                                                                                                                                                                                                                                                                                                                                                                       |                          |
|        | Case I- when cars are moving in the same direction.<br>Distance covered by car I in 9 hours = 9x.<br>Distance covered by car II in 9 hours = 9y<br>Therefore 9 (x-y) = 180<br>=> x-y= 20                                                                                                                                                                                                                                                                           | 2                        |
|        | case II- when cars are moving in opposite directions.<br>Distance covered by Car I in 1 hour = $x$<br>Distance covered by Car II in 1 hour = $y$                                                                                                                                                                                                                                                                                                                   |                          |
|        | Therefore x + y=180 (ii)<br>Solving (i) and (ii) we get, x=100 km/hr, y=80 km/hr.                                                                                                                                                                                                                                                                                                                                                                                  | 2                        |
| 33.    | Correct given, to prove, construction, figure                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                        |
|        | Correct proof                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2                        |
|        | AR = AQ = 7cm<br>BP = BR = AB-AR = 3cm<br>CP = CQ = 5cm<br>BC = BP+PC = 3+5 = 8 cm                                                                                                                                                                                                                                                                                                                                                                                 | 1/2<br>1/2<br>1/2<br>1/2 |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                          |

| 34. |                                                                                                                                                                                        | B<br>h<br>G | C<br>h<br>F<br>1.35<br>E | 5 m                       |                   |     | Correct<br>figure<br>1mark |  |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------------------|---------------------------|-------------------|-----|----------------------------|--|
|     | Let A be the eye level & B, C are positions of balloon<br>Distance covered by balloon in 12 sec = 3x12 = 36 m<br>BC = GF = 36 m                                                        |             |                          |                           |                   |     |                            |  |
|     | $\tan 60^0 = \sqrt{3} = \frac{h}{x}$<br>=> h = x $\sqrt{3}$ (i)                                                                                                                        |             |                          |                           |                   |     |                            |  |
|     | $=> n = x \sqrt{3} \qquad(1)$<br>$\tan 30^{0} = \frac{1}{\sqrt{3}} = \frac{h}{x+36}$                                                                                                   |             |                          |                           |                   |     |                            |  |
|     | $=> h = \frac{x+36}{\sqrt{3}}  \dots \dots  \text{(ii)}$<br>Solving (i) and (ii) h= $18\sqrt{3} = 31.14 \text{ m}$<br>Height of balloon from ground = $1.35 + 31.14 = 32.49 \text{ m}$ |             |                          |                           |                   |     | 1                          |  |
| 35. |                                                                                                                                                                                        |             |                          |                           |                   |     | Correct                    |  |
|     | Class                                                                                                                                                                                  | x           | f                        | $u = \frac{x - 102.5}{5}$ | fu                | cf  | table<br>2marks            |  |
|     | 85-90                                                                                                                                                                                  | 87.5        | 15                       | -3                        | -45               | 15  |                            |  |
|     | 90-95                                                                                                                                                                                  | 92.5        | 22                       | -2                        | -44               | 37  |                            |  |
|     | 95-100                                                                                                                                                                                 | 97.5        | 20                       | -1                        | -20               | 57  |                            |  |
|     | 100-10                                                                                                                                                                                 | 5 102.5     | 18                       | 0                         | 0                 | 75  |                            |  |
|     | 105-11                                                                                                                                                                                 | 0 107.5     | 20                       | 1                         | 20                | 95  |                            |  |
|     | 110-11                                                                                                                                                                                 | 5 112.5     | 25                       | 2                         | 50                | 120 |                            |  |
|     |                                                                                                                                                                                        |             | Σf = 120                 |                           | <i>Σ</i> fu = -39 |     |                            |  |
|     | Mean = $\overline{x}$ = 102.5 - 5 x $\frac{39}{120}$<br>= 100.875<br>Median class is 100-105<br>Median = 100 + $\frac{5}{18}$ (60-57) = 100.83                                         |             |                          |                           |                   |     |                            |  |
|     |                                                                                                                                                                                        |             |                          | OR                        |                   |     |                            |  |

|           | Monthly Expenditure                                                              | fi          | Xi           | f <sub>i</sub> x <sub>i</sub> |   | Correct         |
|-----------|----------------------------------------------------------------------------------|-------------|--------------|-------------------------------|---|-----------------|
|           | 1000-1500                                                                        | 24          | 1250         | 30,000                        | - | table<br>2marks |
|           | 1500-2000                                                                        | 40          | 1750         | 70,000                        | _ | Zmarks          |
|           | 2000-2500                                                                        | 33          | 2250         | 74,250                        | _ |                 |
|           | 2500-3000                                                                        | X=28        | 2750         | 77,000                        |   |                 |
|           | 3000-3500                                                                        | 30          | 3250         | 97,500                        |   |                 |
|           | 3500-4000                                                                        | 22          | 3750         | 82,500                        |   |                 |
|           | 4000-4500                                                                        | 16          | 4250         | 68,000                        |   |                 |
|           | 4500-5000                                                                        | 7           | 4750         | 33,250                        |   |                 |
|           | 172+x=200                                                                        |             |              |                               |   | 1               |
|           | X=28                                                                             |             |              |                               |   | 1               |
|           | Mean= $\frac{532500}{200}$                                                       |             |              |                               |   |                 |
|           |                                                                                  |             |              |                               |   |                 |
|           | = 2662.5                                                                         |             |              |                               |   | 1               |
|           |                                                                                  |             |              |                               |   |                 |
|           |                                                                                  |             | Sectior      | ו E                           |   |                 |
| 36.(i)    | First term a = 3, A                                                              | .P is 3, 6, | 9, 12,24     |                               |   | 1/2             |
|           |                                                                                  |             | difference d | = 6-3 = 3                     |   | 1/2             |
| (::)      | $24 - 2 \cdot (-4)2$                                                             |             |              |                               |   |                 |
| (ii)      | 34 = 3 + (n-1)3                                                                  | 1h:ah       |              | 1/2                           |   |                 |
|           | => n = $34/3 = 11\frac{1}{3}$ which is not a positive integer.                   |             |              |                               |   | /2              |
|           | Therefore, it is not possible to have 34 jars in a layer if the given pattern is |             |              |                               |   |                 |
| (         | continued.                                                                       |             |              |                               |   |                 |
| (iii)(A)  | $S_n = \frac{n}{2} [2x3 + (n-1)3]$                                               |             | 1/2          |                               |   |                 |
|           | $S_n = \frac{n}{2} [2x3 + (n-1)3]$<br>= $\frac{n}{2} [6 + 3n-3]$                 |             | 1            |                               |   |                 |
|           | $n \begin{bmatrix} 2 \\ 2 \end{bmatrix}$                                         |             |              |                               |   |                 |
|           | $=\frac{n}{2}[3+3n]$                                                             |             |              |                               |   |                 |
|           | $= 3 \frac{n}{2} [1+n]$                                                          |             |              |                               |   |                 |
|           | $s_8 = 3 \times \frac{8}{2} (1+8)$                                               |             |              |                               |   | 1/2             |
|           | = 108                                                                            |             |              |                               |   |                 |
|           |                                                                                  |             | OR           |                               |   |                 |
|           | A.P will be 6, 9, 12,                                                            |             |              |                               |   |                 |
| (iii) (B) | a= 6, d=3                                                                        |             |              |                               |   | 1/2             |
|           | a - 0, a–0                                                                       |             |              |                               |   |                 |
|           | $t_5 = 6 + (5-1)3$                                                               |             |              |                               |   | 1               |
|           | = 6 + 12                                                                         |             |              |                               |   | 1               |
|           | = 18                                                                             |             |              |                               |   | 1/2             |
| 37. (i)   | ∠DPQ = ∠DEF                                                                      |             |              |                               |   |                 |
|           |                                                                                  |             |              |                               |   |                 |
|           | ∠PDQ =∠EDF                                                                       |             |              |                               |   | 1               |
| (ii)      | Therefore ⊿ DPQ                                                                  | ~ ⊿ DEF     | -            |                               |   | 1               |
| (")       | DE = 50 + 70 = 120  cm                                                           |             |              |                               |   | 1/2             |
|           | $\frac{DP}{DE} = \frac{PQ}{EF}$                                                  |             |              |                               |   |                 |
|           | — = <del>_</del>                                                                 |             |              |                               |   |                 |

|           | Therefore $\frac{PQ}{EF} = \frac{50}{120}$ or $\frac{5}{12}$                                                                                              |                           |  |  |  |  |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|--|--|--|--|
| (iii) (A) | $\frac{AB}{DE} = \frac{5}{2} = \frac{BC}{EF} = \frac{AC}{DF}$ $\Rightarrow AB = \frac{5}{2} DE$                                                           | 1                         |  |  |  |  |
|           | $\frac{perimeter \ of \ \triangle ABC}{perimeter \ of \ \triangle DEF} = \frac{\frac{5}{2}(DE + EF + FD)}{DE + EF + FD} = \frac{5}{2} \text{ (Constant)}$ | 1                         |  |  |  |  |
|           | OR                                                                                                                                                        |                           |  |  |  |  |
| (iii)(B)  | A $B$ $M$ $C$ $E$ $N$ $F$                                                                                                                                 | Correct<br>fig. ½<br>mark |  |  |  |  |
|           | $\frac{AB}{DE} = \frac{BC}{EF} = \frac{BC/2}{EF/2} = \frac{BM}{EN}$<br>Also $\angle B = \angle E$                                                         | 1                         |  |  |  |  |
|           | Therefore $\triangle$ ABM ~ $\triangle$ DEN.                                                                                                              | 1⁄2                       |  |  |  |  |
| 38. (i)   | $I = \sqrt{r^2 + h^2} = \sqrt{(1.5)^2 + (2)^2}$                                                                                                           | 1/2                       |  |  |  |  |
|           | $=\sqrt{2.25 + 4}$<br>= $\sqrt{6.25}$<br>= 2.5 m                                                                                                          | 1/2                       |  |  |  |  |
| (ii)      | CSA of cone = $\pi$ rl<br>= $\frac{22}{7} \times 1.5 \times 2.5$                                                                                          | 1/2                       |  |  |  |  |
|           | $=\frac{1}{7} \times 1.5 \times 2.5$<br>= 11.78 m <sup>2</sup>                                                                                            | 1⁄2                       |  |  |  |  |
| (iii) (A) | CSA of cylinder = $2\Pi$ rh<br>= $2 \times \frac{22}{7} \times 1.5 \times 7$                                                                              | 1                         |  |  |  |  |
|           | = 66 m <sup>2</sup><br>Cost of metal sheet used = 66 x 2000<br>= ₹1,32,000                                                                                | 1                         |  |  |  |  |
| (iii) (B) | OR<br>Volume of cylinder = $\Pi r^2 h$<br>= $\frac{22}{7} \times (1.5)^2 \times 7$                                                                        | 1/2                       |  |  |  |  |
|           | $= 49.5 m^3$                                                                                                                                              | 12                        |  |  |  |  |

Volume of cone = 
$$\frac{1}{3} \pi r^2 h$$
  
= $\frac{1}{3} \times \frac{22}{7} \times (1.5)^2 \times 2$   
= 4.71 m<sup>3</sup>  
Total capacity = 49.5 + 4.71 = 54.21 m<sup>3</sup>  
 $\frac{1}{2}$