No. of Questions - 23 No. of Printed Pages - 12

SS-40-Phy.

भौतिक विज्ञान (PHYSICS)

उच्च माध्यमिक परीक्षा, 2021

समय: 31/4 घण्टे

पूर्णीक: 56

परीक्षार्थियों के लिए सामान्य निर्देश:

GENERAL INSTRUCTIONS TO THE EXAMINEES:

(1) परीक्षार्थी सर्वप्रथम अपने स्व पर नामांक अनिवार्यतः लिखें।

Candidate must write first his / her Roll No. on the question paper compulsorily.

(2) सभी प्रश्न करने अनिवार्य हैं।

All the questions are compulsory.

(3) सभी प्रश्नों का उत्तर दी गई उत्तर-पुस्तिका में ही लिखें ।

Write the answer to all questions in the given answer-book only.

SS-40-Phy.

[Turn over

(4) जिन प्रश्नों में आन्तरिक खण्ड हैं, उन सभी के उत्तर एक साथ ही लिखें।

For questions having more than one part, the answers to those parts are to be written together in continuity.

(5) प्रश्न-पत्र के हिन्दी व अंग्रेजी रूपांतर में किसी प्रकार की त्रुटि/अंतर/विरोधाभास होने पर हिन्दी भाषा के प्रश्न को ही सही मानें।

If there is any error / difference / contradiction in Hindi & English versions of the question paper, the question of Hindi version should be treated valid.

(6) प्रश्न का उत्तर लिखने से पूर्व प्रश्न का क्रमांक अवश्य लिखें।
Write down the serial number of the question before attempting it.

(7) प्रश्नों का अंक भार निम्नानुसार है।

Weightage of marks for the question is as follows.

खण्ड	प्रश्न संख्या	प्रश्नों की संख्या	अंक प्रत्येक प्रश्न	कुल अंक भार
खण्ड-अ (A)	1 (i to x), 2 to 11	20	.1	20
खुण्ड-ब (B)	12 to 15	4	2	8
खण्ड-स (C)	16 to 19	4	3	12
खण्ड-द (D)	20 to 21	. 2	74	8
खण्ड-य (E)	. 22 to 23	2	4	8

(8) प्रश्न क्रमांक 16 से 23 में आंतरिक विकल्प हैं।

There are internal choices in Question Nos. 16 to 23.

खण्ड - अ

SECTION - A

1. बहुविकल्प प्रश्नों (i से x) के सही विकल्प का चयन कर उत्तर दी गई उत्तर पुस्तिका में लिखिए।

Choose the correct answer from multiple choice questions (i to x) and write in given answer book.

- (i) एक बन्द पृष्ठ के अन्दर 'n' विद्युत द्विध्रुव रखे हैं। बन्द पृष्ठ से निर्गत कुल विद्युत फ्लक्स का मान होगा
 - (34) $\frac{nq}{e^0}$

 $(a) \frac{q}{\epsilon_0}$

(स) $\frac{q}{n \in 0}$

(द) शून्य

There are 'n' electric dipole situated inside a closed surface. The value of net electric flux leaving from the closed surface will be

(A) $\frac{nq}{\epsilon_0}$

(B) . <u>q</u> ∈ 0

(C) $\frac{q}{n \in 0}$

(ii) विद्युत वाहक बल का मात्रक है

(अ) न्यूटन

(ब) वोल्ट

(स) ओम

(द) एम्पियर

Unit of electro motive force is

(A) newton

(B) volt

(C) ohm

(D) ampere

(iii) धारामापी में एकांक विक्षेप के लिए आवश्यक धारा को कहते हैं

- (अ) धारा सुग्राहिता
- (ब) वोल्टता सुग्राहिता

(स) दक्षतांक

(द) परिवर्तन गुणांक

The current required for unit deflection in galvanometer is called

- (A) current sensitivity
- (B) voltage sensitivity
- (C) figure of merit
- (D) reduction factor

SS-40-Phy.

Turn over

(अ) लोहा (ब) निकल (स) कोबाल्ट (ट) गैडोलिनियम In the following, the substance whose Curie temperature is highest : 1 (A) Iron (B) Nickel (C) Cobalt (D) Gadolinium (V) प्रत्यावर्ती धारा परिपथ में धारा का वर्ग माध्य मूल मान $\sqrt{2}A$ है । इसका शिखर मान होगा (अ) $2A$ (ब) $1A$ (स) $0.5A$ (द) भून्य The root mean square current in AC circuit is $\sqrt{2}$ A. Its peak value will be (A) $2A$ (B) $1A$ (C) $0.5A$ (D) zero (Vi) यदि सरल सूक्षदर्शी से प्रतिबिच्च अनन्त पर बनता है, तो उसकी आवर्धन क्षमता (M) का सूत्र होगा (अ) $1+\frac{D}{f}$ (व) $1+\frac{f}{D}$ (म) $\frac{D}{f}$ (If image formed at infinity by simple microscope, then formula for its magnifying power (M) will be (A) $1+\frac{D}{f}$ (D) $\frac{f}{D}$ (Vi) फोटॉन के संवेग का सूत्र है (३) hv (a) $\frac{h}{\lambda}$ (c) $\frac{h\lambda}{c}$ (c) $\frac{h\lambda}{c}$ (d) $\frac{h\lambda}{c}$ (e) $\frac{h\lambda}{c}$ (f) $\frac{h}{c\lambda}$	(iv)	निम्नलिखित में सबसे अधिक क्यूरी ता	प वाल	ा पदार्थ है :	
In the following, the substance whose Curie temperature is highest: (A) Iron (B) Nickel (C) Cobalt (D) Gadolinium (v) प्रत्यावर्ती धारा परिपथ में धारा का वर्ग माध्य मूल मान $\sqrt{2}A$ है । इसका शिखर मान होगा (3) $2A$ (ब) $1A$ (स) $0.5A$ (द) शून्य The root mean square current in AC circuit is $\sqrt{2}A$. Its peak value will be (A) $2A$ (B) $1A$ (C) $0.5A$ (D) zero (vi) यदि सरल सुस्मदर्शी से प्रतिबिम्ब अनन्त पर बनता है, तो उसकी आवर्धन क्षमता (M) का सूत्र होगा (3) $1+\frac{D}{f}$ (व) $1+\frac{f}{D}$ (स) $\frac{D}{f}$ If image formed at infinity by simple microscope, then formula for its magnifying power (M) will be (A) $1+\frac{D}{f}$ (B) $1+\frac{f}{D}$ (C) $\frac{D}{f}$ (D) $\frac{f}{D}$ (vii) फोटॉन के संवेग का सूत्र है (3) hv (ब) $\frac{h\lambda}{c}$ (द) $\frac{h}{c\lambda}$ The formula of momentum for a photon is (A) hv (B) $\frac{h}{\lambda}$ (C) $\frac{h\lambda}{c}$ (D) $\frac{h}{c\lambda}$		(अ) लोहा	(ब)	निकल	14
(A) Iron (B) Nickel (C) Cobalt (D) Gadolinium (V) प्रत्यावर्ती धारा परिषथ में धारा का वर्ग माध्य मूल मान $\sqrt{2}$ A है । इसका शिखर मान होगा (अ) 2 A (व) 1 A (स) 0.5 A (द) सून्य The root mean square current in AC circuit is $\sqrt{2}$ A. Its peak value will be (A) 2 A (B) 1 A (C) 0.5 A (D) zero (Vi) यदि सरल सूक्ष्मदर्शी से प्रतिबिध्व अनन्त पर बनता है, तो उसकी आवर्धन क्षमता (M) का सूत्र होगा (अ) $1 + \frac{f}{f}$ (व) $1 + \frac{f}{D}$ (स) $\frac{D}{f}$ (If image formed at infinity by simple microscope, then formula for its magnifying power (M) will be (A) $1 + \frac{D}{f}$ (B) $1 + \frac{f}{D}$ (C) $\frac{D}{f}$ (D) $\frac{f}{D}$ (Vii) फोटॉन के संवेग का सूत्र है (अ) $h\nu$ (ब) $\frac{h}{c}$ (द) $\frac{h}{c\lambda}$ The formula of momentum for a photon is (A) $h\nu$ (B) $\frac{h}{\lambda}$ (C) $\frac{h\lambda}{c}$ (D) $\frac{h}{c\lambda}$	4	(स) कोबाल्ट	(द)	गैडोलिनियम	
(A) Iron (B) Nickel (C) Cobalt (D) Gadolinium (V) प्रत्यावर्ती धारा परिषथ में धारा का वर्ग माध्य मूल मान $\sqrt{2}$ A है । इसका शिखर मान होगा (अ) 2 A (व) 1 A (स) 0.5 A (द) सून्य The root mean square current in AC circuit is $\sqrt{2}$ A. Its peak value will be (A) 2 A (B) 1 A (C) 0.5 A (D) zero (Vi) यदि सरल सूक्ष्मदर्शी से प्रतिबिध्व अनन्त पर बनता है, तो उसकी आवर्धन क्षमता (M) का सूत्र होगा (अ) $1 + \frac{f}{f}$ (व) $1 + \frac{f}{D}$ (स) $\frac{D}{f}$ (If image formed at infinity by simple microscope, then formula for its magnifying power (M) will be (A) $1 + \frac{D}{f}$ (B) $1 + \frac{f}{D}$ (C) $\frac{D}{f}$ (D) $\frac{f}{D}$ (Vii) फोटॉन के संवेग का सूत्र है (अ) $h\nu$ (ब) $\frac{h}{c}$ (द) $\frac{h}{c\lambda}$ The formula of momentum for a photon is (A) $h\nu$ (B) $\frac{h}{\lambda}$ (C) $\frac{h\lambda}{c}$ (D) $\frac{h}{c\lambda}$		In the following, the substance	whos	e Curie temperature is highest:	1
(v) प्रत्यावर्ती धारा परिपथ में धारा का वर्ग माध्य मूल मान $\sqrt{2}A$ है । इसका शिखर मान होगा (अ) $2A$ (व) $1A$ (स) $0.5A$ (द) जून्य The root mean square current in AC circuit is $\sqrt{2}$ A. Its peak value will be (A) $2A$ (B) $1A$ (C) $0.5A$ (D) zero (vi) यदि सरल स्क्ष्मदर्शी से प्रतिबिम्ब अनन्त पर बनता है, तो उसकी आवर्धन क्षमता (M) का सूत्र होगा (अ) $1+\frac{D}{f}$ (व) $1+\frac{f}{D}$ (स) $\frac{D}{f}$ (व) $1+\frac{f}{D}$ (ह) $\frac{1}{f}$ (ह) $\frac{h}{c}$					
(अ) $2\mathrm{A}$ (ब) $1\mathrm{A}$ (स) $0.5\mathrm{A}$ (द) शून्य The root mean square current in AC circuit is $\sqrt{2}\mathrm{A}$. Its peak value will be (A) $2\mathrm{A}$ (B) $1\mathrm{A}$ (C) $0.5\mathrm{A}$ (D) zero (vi) यदि सरल सृक्ष्यदर्शी से प्रतिबिम्ब अनन्त पर बनता है, तो उसकी आवर्षन क्षमता (M) का सूत्र होगा (अ) $1+\frac{\mathrm{D}}{\mathrm{f}}$ (ब) $1+\frac{\mathrm{f}}{\mathrm{D}}$ (स) $\frac{\mathrm{D}}{\mathrm{f}}$ (म) $\frac{\mathrm{D}}{\mathrm{f}}$ (If image formed at infinity by simple microscope, then formula for its magnifying power (M) will be (A) $1+\frac{\mathrm{D}}{\mathrm{f}}$ (B) $1+\frac{\mathrm{f}}{\mathrm{D}}$ (C) $\frac{\mathrm{D}}{\mathrm{f}}$ (D) $\frac{\mathrm{f}}{\mathrm{D}}$ (vii) फोटॉन के संवेग का सूत्र है (अ) $\mathrm{h}\nu$ (ब) $\frac{\mathrm{h}}{\lambda}$ (स) $\frac{\mathrm{h}\lambda}{\mathrm{c}}$ (द) $\frac{\mathrm{h}}{\mathrm{c}\lambda}$ The formula of momentum for a photon is (A) $\mathrm{h}\nu$ (B) $\frac{\mathrm{h}}{\lambda}$ (C) $\frac{\mathrm{h}\lambda}{\mathrm{c}}$ (D) $\frac{\mathrm{h}}{\mathrm{c}\lambda}$					92
(अ) $2\mathrm{A}$ (ब) $1\mathrm{A}$ (स) $0.5\mathrm{A}$ (द) शून्य The root mean square current in AC circuit is $\sqrt{2}\mathrm{A}$. Its peak value will be (A) $2\mathrm{A}$ (B) $1\mathrm{A}$ (C) $0.5\mathrm{A}$ (D) zero (vi) यदि सरल सृक्ष्यदर्शी से प्रतिबिम्ब अनन्त पर बनता है, तो उसकी आवर्षन क्षमता (M) का सूत्र होगा (अ) $1+\frac{\mathrm{D}}{\mathrm{f}}$ (ब) $1+\frac{\mathrm{f}}{\mathrm{D}}$ (स) $\frac{\mathrm{D}}{\mathrm{f}}$ (म) $\frac{\mathrm{D}}{\mathrm{f}}$ (If image formed at infinity by simple microscope, then formula for its magnifying power (M) will be (A) $1+\frac{\mathrm{D}}{\mathrm{f}}$ (B) $1+\frac{\mathrm{f}}{\mathrm{D}}$ (C) $\frac{\mathrm{D}}{\mathrm{f}}$ (D) $\frac{\mathrm{f}}{\mathrm{D}}$ (vii) फोटॉन के संवेग का सूत्र है (अ) $\mathrm{h}\nu$ (ब) $\frac{\mathrm{h}}{\lambda}$ (स) $\frac{\mathrm{h}\lambda}{\mathrm{c}}$ (द) $\frac{\mathrm{h}}{\mathrm{c}\lambda}$ The formula of momentum for a photon is (A) $\mathrm{h}\nu$ (B) $\frac{\mathrm{h}}{\lambda}$ (C) $\frac{\mathrm{h}\lambda}{\mathrm{c}}$ (D) $\frac{\mathrm{h}}{\mathrm{c}\lambda}$	(v)	प्रत्यावर्ती धारा परिपथ में धारा का वर्ग ।	गाध्य मृ	्ल मान $\sqrt{2}\mathrm{A}$ है । इसका शिखर मान होगा	
The root mean square current in AC circuit is $\sqrt{2}$ A. Its peak value will be (A) 2 A (B) 1 A (C) 0.5 A (D) zero (vi) यदि सरल सूक्ष्मदर्शी से प्रतिबिम्ब अनन्त पर बनता है, तो उसकी आवर्धन क्षमता (M) का सूत्र होगा (अ) $1 + \frac{D}{f}$ (ब) $1 + \frac{f}{D}$ (स) $\frac{D}{f}$ If image formed at infinity by simple microscope, then formula for its magnifying power (M) will be (A) $1 + \frac{D}{f}$ (B) $1 + \frac{f}{D}$ (C) $\frac{D}{f}$ (D) $\frac{f}{D}$ (vii) फोटॉन के संवेग का सूत्र है (अ) hv (ब) $\frac{h}{\lambda}$ (The formula of momentum for a photon is (A) hv (B) $\frac{h}{\lambda}$ (C) $\frac{h\lambda}{c}$ (D) $\frac{h}{c\lambda}$					
(A) $2A$ (B) $1A$ (C) $0.5A$ (D) zero (vi) यदि सरल सूक्ष्मदर्शी से प्रतिबिध्य अनन्त पर बनता है, तो उसकी आवर्धन क्षमता (M) का सूत्र होगा (अ) $1+\frac{D}{f}$ (ब) $1+\frac{f}{D}$ (स) $\frac{D}{f}$ (ां image formed at infinity by simple microscope, then formula for its magnifying power (M) will be (A) $1+\frac{D}{f}$ (B) $1+\frac{f}{D}$ (C) $\frac{D}{f}$ (D) $\frac{f}{D}$ (vii) फोटॉन के संबेग का सूत्र है (व) $\frac{h}{c}$ (त) $\frac{h}{c}$ (The formula of momentum for a photon is (A) $h\nu$ (B) $\frac{h}{\lambda}$ (C) $\frac{h}{c}$ (D) $\frac{h}{c\lambda}$		(积) 0.5 A	(द)	शून्य	
(A) $2A$ (B) $1A$ (C) $0.5A$ (D) zero (vi) यदि सरल सूक्ष्मदर्शी से प्रतिबिध्य अनन्त पर बनता है, तो उसकी आवर्धन क्षमता (M) का सूत्र होगा (अ) $1+\frac{D}{f}$ (ब) $1+\frac{f}{D}$ (स) $\frac{D}{f}$ (ां image formed at infinity by simple microscope, then formula for its magnifying power (M) will be (A) $1+\frac{D}{f}$ (B) $1+\frac{f}{D}$ (C) $\frac{D}{f}$ (D) $\frac{f}{D}$ (vii) फोटॉन के संबेग का सूत्र है (व) $\frac{h}{c}$ (त) $\frac{h}{c}$ (The formula of momentum for a photon is (A) $h\nu$ (B) $\frac{h}{\lambda}$ (C) $\frac{h}{c}$ (D) $\frac{h}{c\lambda}$		The root mean square current in	AC	circuit is $\sqrt{2}$ A. Its peak value will be	1
(vi) यदि सरल सूक्ष्मदर्शी से प्रतिबिम्ब अनन्त पर बनता है, तो उसकी आवर्धन क्षमता (M) का सूत्र होगा (अ) $1+\frac{D}{f}$ (ब) $1+\frac{f}{D}$ (स) $\frac{D}{f}$ If image formed at infinity by simple microscope, then formula for its magnifying power (M) will be (A) $1+\frac{D}{f}$ (B) $1+\frac{f}{D}$ (C) $\frac{D}{f}$ (D) $\frac{f}{D}$ (vii) फोटॉन के संवेग का सूत्र है (अ) hv (ब) $\frac{h}{\lambda}$ (स) $\frac{h\lambda}{c}$ (द) $\frac{h}{c\lambda}$ The formula of momentum for a photon is (A) hv (B) $\frac{h}{\lambda}$ (C) $\frac{h\lambda}{c}$ (D) $\frac{h}{c\lambda}$		(A) 2 A			
(अ) $1+\frac{D}{f}$ (स) $\frac{D}{f}$ If image formed at infinity by simple microscope, then formula for its magnifying power (M) will be (A) $1+\frac{D}{f}$ (B) $1+\frac{f}{D}$ (C) $\frac{D}{f}$ (D) $\frac{f}{D}$ (vii) फोटॉन के संवेग का सूत्र है (अ) $h\nu$ (ब) $\frac{h\lambda}{c}$ (ए) $\frac{h\lambda}{c}$ (द) $\frac{h}{c\lambda}$ The formula of momentum for a photon is (A) $h\nu$ (B) $\frac{h}{\lambda}$ (C) $\frac{h\lambda}{c}$ (D) $\frac{h}{c\lambda}$					
(स) $\frac{D}{f}$ If image formed at infinity by simple microscope, then formula for its magnifying power (M) will be (A) $1 + \frac{D}{f}$ (B) $1 + \frac{f}{D}$ (C) $\frac{D}{f}$ (D) $\frac{f}{D}$ (vii) फोटॉन के संवेग का सूत्र है (अ) $h\nu$ (ब) $\frac{h\lambda}{c}$ (द) $\frac{h}{c\lambda}$ The formula of momentum for a photon is (A) $h\nu$ (B) $\frac{h}{\lambda}$ (C) $\frac{h\lambda}{c}$ (D) $\frac{h}{c\lambda}$	(vi)	यदि सरल सूक्ष्मदर्शी से प्रतिबिम्ब अनन्त	पर ब	नता है, तो उसकी आवर्धन क्षमता (M) का सूत्र होगा	
(स) $\frac{D}{f}$ If image formed at infinity by simple microscope, then formula for its magnifying power (M) will be (A) $1 + \frac{D}{f}$ (B) $1 + \frac{f}{D}$ (C) $\frac{D}{f}$ (D) $\frac{f}{D}$ (vii) फोटॉन के संवेग का सूत्र है (अ) $h\nu$ (ब) $\frac{h\lambda}{c}$ (द) $\frac{h}{c\lambda}$ The formula of momentum for a photon is (A) $h\nu$ (B) $\frac{h}{\lambda}$ (C) $\frac{h\lambda}{c}$ (D) $\frac{h}{c\lambda}$		(\mathfrak{F}) $1+\frac{\mathrm{D}}{\mathfrak{E}}$	(অ)	$1 + \frac{f}{D}$	
If image formed at infinity by simple microscope, then formula for its magnifying power (M) will be $(A) \ 1 + \frac{D}{f} \qquad (B) \ 1 + \frac{f}{D}$ $(C) \ \frac{D}{f} \qquad (D) \ \frac{f}{D}$ $(vii) \ \text{फोटॉन के संवेग का स्त्र है}$ $(A) \ hv \qquad (B) \ \frac{h}{\lambda}$ $(C) \ \frac{h\lambda}{c} \qquad (C) \ \frac{h\lambda}{c} \qquad (D) \ \frac{h}{\lambda}$		1	4		
power (M) will be (A) $1 + \frac{D}{f}$ (B) $1 + \frac{f}{D}$ (C) $\frac{D}{f}$ (D) $\frac{f}{D}$ (vii) फोटॉन के संवेग का सूत्र है (अ) $h\nu$ (ब) $\frac{h}{\lambda}$ (स) $\frac{h\lambda}{c}$ (द) $\frac{h}{c\lambda}$ The formula of momentum for a photon is (A) $h\nu$ (B) $\frac{h}{\lambda}$ (C) $\frac{h\lambda}{c}$ (D) $\frac{h}{c\lambda}$		$(H) \frac{D}{f}$	(द)	$\frac{1}{D}$	
(A) $1 + \frac{D}{f}$ (B) $1 + \frac{f}{D}$ (C) $\frac{D}{f}$ (D) $\frac{f}{D}$ (vii) फोटॉन के संवेग का सूत्र है (अ) $h\nu$ (ब) $\frac{h}{\lambda}$ (स) $\frac{h\lambda}{c}$ (द) $\frac{h}{c\lambda}$ The formula of momentum for a photon is (A) $h\nu$ (B) $\frac{h}{\lambda}$ (C) $\frac{h\lambda}{c}$ (D) $\frac{h}{c\lambda}$		If image formed at infinity by	simp	le microscope, then formula for its magnifying	7
(C) $\frac{D}{f}$ (D) $\frac{f}{D}$ (vii) फोटॉन के संबेग का सूत्र है (अ) hv (ब) $\frac{h}{\lambda}$ (स) $\frac{h\lambda}{c}$ (द) $\frac{h}{c\lambda}$ The formula of momentum for a photon is (A) hv (B) $\frac{h}{\lambda}$ (C) $\frac{h\lambda}{c}$ (D) $\frac{h}{c\lambda}$				en e	1
(vii) फोटॉन के संवेग का सूत्र है (अ) $h\nu$ (ब) $\frac{h}{\lambda}$ (स) $\frac{h\lambda}{c}$ (द) $\frac{h}{c\lambda}$ The formula of momentum for a photon is (A) $h\nu$ (B) $\frac{h}{\lambda}$ (C) $\frac{h\lambda}{c}$ (D) $\frac{h}{c\lambda}$	*	(A) $1 + \frac{D}{f}$	(B)	$1+\frac{1}{D}$	
(vii) फोटॉन के संवेग का सूत्र है (अ) $h\nu$ (ब) $\frac{h}{\lambda}$ (स) $\frac{h\lambda}{c}$ (द) $\frac{h}{c\lambda}$ The formula of momentum for a photon is (A) $h\nu$ (B) $\frac{h}{\lambda}$ (C) $\frac{h\lambda}{c}$ (D) $\frac{h}{c\lambda}$		(C) D	(D)	\mathbf{f}	
(3) hv (a) $\frac{h}{\lambda}$ (b) $\frac{h\lambda}{c}$ (c) $\frac{h}{c\lambda}$ The formula of momentum for a photon is (d) hv (e) $\frac{h}{c\lambda}$ (f) $\frac{h}{c\lambda}$ (g) $\frac{h}{c\lambda}$ (g) $\frac{h}{c\lambda}$ (g) $\frac{h}{c\lambda}$		$(C) \frac{1}{f}$	(D)	\overline{D}	
(A) $\frac{h\lambda}{c}$ (C) $\frac{h}{c\lambda}$ (C) $\frac{h\lambda}{c}$ (C) $\frac{h\lambda}{c}$ (C) $\frac{h\lambda}{c}$ (D) $\frac{h}{c\lambda}$	(vii)	फोटॉन के संवेग का सूत्र है		# d.	
(A) $\frac{h\lambda}{c}$ (C) $\frac{h}{c\lambda}$ (C) $\frac{h\lambda}{c}$ (C) $\frac{h\lambda}{c}$ (C) $\frac{h\lambda}{c}$ (D) $\frac{h}{c\lambda}$		(31) hv	(ब)	$\underline{\underline{\mathbf{h}}}$	
The formula of momentum for a photon is (A) $h\nu$ (B) $\frac{h}{\lambda}$ (C) $\frac{h\lambda}{c}$ (D) $\frac{h}{c\lambda}$			(1)	67	
The formula of momentum for a photon is (A) hv (B) $\frac{h}{\lambda}$ (C) $\frac{h\lambda}{c}$ (D) $\frac{h}{c\lambda}$		(H) $\frac{n\lambda}{c}$	(द)	$\frac{h}{c\lambda}$	
(A) hv (B) $\frac{h}{\lambda}$ (C) $\frac{h\lambda}{c}$ (D) $\frac{h}{c\lambda}$		The formula of momentum for	a nho		
(C) $\frac{h\lambda}{c}$ (D) $\frac{h}{c\lambda}$				1	1
(C) c (D) $\frac{n}{c\lambda}$			(B)	$\overline{\lambda}$	
and the second s		$(C) \frac{\ln \kappa}{c}$	(D)	$\frac{\mathbf{h}}{\mathbf{h}}$	
	O Phy			CA	

(viii) हाइड्रोजन स्पेक्ट्रम के पराबैंग्नी क्षेत्र में प	गाई जाने वाली श्रेणी है	, n	
	(अ) लाइमन	(ब) बामर		
	(स) फुण्ड	(द) पाशन	<i>8</i>	
7	The series found in the ultra-vi	olet region of H-spectrum is		1
	(A) Lyman	(B) Balmer		.9
	(C) Pfund	(D) Paschen		
(ix)	ट्रांजिस्टर के लिए धारा प्रवर्धन गुणांकों	'α' एवं 'β' में सम्बन्ध है		
	(34) $\beta = \alpha (1 - \alpha)$	$(\overline{a}) \alpha = \beta (1 + \alpha)$	and the second	
	$(\forall \beta = \alpha (1 + \alpha))$	$(z) \alpha = \beta \ (1 - \alpha)$		
	The relation between current a	mplification factors 'α' and 'β' f	or a transistor is	1
	(A) $\beta = \alpha (1 - \alpha)$	(B) $\alpha = \beta (1 + \alpha)$		
	(C) $\beta = \alpha (1 + \alpha)$	(D) $\alpha = \beta (1 - \alpha)$		
(x)	विद्युत-चुम्बकीय तरंगों में विद्युत क्षेत्र	$(ec{\mathrm{E}})$ एवं चुम्बकीय क्षेत्र $(ec{\mathrm{B}})$ के पूर्व कीए	ा का मान होता है –	
	(अ) 180°	ERICE		
	(स) 45°	्र (द) 0°	ri. El 11	
	In electromagnetic waves, t	he value of angle between el	ectric field (E) and	
	magnetic field (B) is			1
	(A) 180°	(B) 90°		9€
	(C) 45°	(D) 0°		
	Ţ,		*	
निम	न प्रश्नों के उत्तर एक पंक्ति में दीजिए : (प्रश्न क्रमांक 2 से 8 तक)	ė	
Giv	ve the answer of the following q	uestions in one line : (Q. No. 2 to	0 8)	ă
A	पी बिन्दु आवेश के लिए समविभव पृष्ठ ^र	का चित्र बनाइए ।		
	aw a diagram of equipotential s			1
1)r	aw a diagram of equipolential s	arrang tot a bount arrange.		

SS-40-Phy.

2.

[Turn over

3.	सेल के आन्तरिक प्रतिरोध की परिभाषा लिखिए।	
	Write the definition of internal resistance of a cell.	1
4		
4.	भू-चुम्बकत्व के कोई दो अवयवों के नाम लिखिए ।	
	Write name of any two elements of Earth's magnetism.	1
į.		
5.	लौह-चुम्बकीय पदार्थ के लिए शैथिल्य वक्र (B-H वक्र) बनाइए।	
ía.	Draw hysteresis curve (B-H curve) for a ferromagnetic substance.	1
6.	लैंज का नियम किस भौतिक राशि के संरक्षण पर आधारित है ?	
	On conservation of which physical quantity the Lenz's law is based?	1
7.	कला संबद्ध स्रोत किसे कहते हैं ?	ě
	What are coherent sources?	1
,		
8.	मॉडूलन को परिभाषित कीजिए।	
	Define modulation.	1
निर्दे	श: प्रश्न संख्या 9 से 11 के उत्तर, उत्तर पुस्तिका में लिखिए।	
No	te: Write answers of question nos. 9 to 11 in answer book.	
9.	किसी चालक की वायु में धारिता 2 μF है। यदि इसे किसी माध्यम में रख दें, तो धारिता 12 μF हो जाती है।	
	माध्यम का परावैद्युतांक होगा।	
	The capacitance of conductor in air is 2 µF. If it placed in a medium, then its capacitance	-
	becomes 12 µF. The dielectric constant of medium will be	
SS-4	10-Phy	

10.	किसी धातु से उत्सर्जित प्रकाशिक इलेक्ट्रॉन की अधिकतम गतिज ऊर्जा 2.2 eV है । निरोधी विभव का मान
	volt होगा ।
	The maximum kinetic energy of an emitted photo electron by a metal is 2.2 eV. The value of stopping potential will be volt.
	नॉट (NOT) द्वार को भी कहते हैं।
Ø11.	
	NOT gate is also called
	खण्ड − ब
	SECTION – B
12.	एक उच्चायी ट्रांसफॉर्मर 220 V को 2200 V में परिवर्तित करता है। यदि उसकी द्वितीयक कुण्डली में फेरों की
	संख्या 1000 हो, तो प्राथमिक कुण्डली में फेरों की संख्या ज्ञात कीजिए।
	A transformer steps up 220 V to 2200 V. If number of turns in secondary coil is 1000,
	then calculate the number of turns in primary coil.
13.	प्रकाश-विद्युत प्रभाव किसे कहते हैं ? प्रकाश-विद्युत भारतिया आपतित प्रकाश का ताव्रता के मध्य आरख
ě	प्रकाश-विद्युत प्रभाव किसे कहते हैं ? प्रकाश-विद्युत भाग विधान प्रकाश की तीव्रता के मध्य आरेख बनाइए।
	What is photoelectric effect? Draw a graph between photoelectric current and intensity
	of incident light.
14.	निम्नलिखित को परिभाषित कीजिए:
	(अ) नाभिकीय विखण्डन
	(ब) नाभिकीय संलयन
	Define the following:
	(A) Nuclear fission 1+1=2
	(B) Nuclear fusion
	आकाश तरंग संचरण में प्रसारण दूरी (d) एवं ऐन्टेना की ऊँचाई (h) में सम्बन्ध प्राप्त कीजिए। आवश्यक चित्र
15.	आकाश तरंग सचरण में प्रसारण दूरा (व) एवं एटा का जिस्से (व)
	बनाइए।
	लनाइए Obtain relation between transmission distance (d) and height of antenna (h) for space
	Obtain relation of the state of
SS-	40-Phy.

खण्ड - स

SECTION - C

16. व्हीटस्टोन सेतु का नामांकित चित्र बनाकर किरचॉफ के नियमों से इसकी सन्तुलित अवस्था का प्रतिबंध प्राप्त कीजिए।

Draw labelled diagram of Wheatstone Bridge and obtain its condition of balance by Kirchhoff's laws.

अथवा/OR

मीटर सेतु द्वारा किसी अज्ञात प्रतिरोध का मान ज्ञात करने की विधि लिखिए। आवश्यक सूत्र व्युत्पन्न कीजिए, परिपथ चित्र बनाइए।

Write the method to determine the value of an unknown resistance by meter bridge.

Derive necessary formula, draw circuit diagram.

1+1+1=3

17. 'L' लम्बाई की एक चालक छड़ समरूप चुम्बकीय क्षेत्र 'B' में क्षेत्र के लम्बवत् एक नियत कोणीय वेग 'ω' से घूर्णन कर रही है । छड़ के सिरों के मध्य प्रेरित विद्युत वाहक बल का व्यंजक प्राप्त कीजिए । आवश्यक चित्र बनाइए ।

A conducting rod of length 'L' is rotating with constant angular velocity 'ω', perpendicular to uniform magnetic field 'B'. Obtain an expression of induced EMF between its ends. Draw necessary diagram.

2+1=

अथवा/OR

- (अ) प्रत्यावर्ती धारा परिपथ में औसत शक्ति का व्यंजक प्राप्त कीजिए।
- (ब) LCR श्रेणी परिपथ में प्रत्यावर्ती धारा के मान में आवृत्ति के साथ परिवर्तन का आरेख बनाइए।
- (A) Obtain an expression of average power in AC circuit.
- (B) Draw a curve for showing variation in alternating current with frequency in LCR series circuit.

 2+1=3
- 18. (अ) लेंस की क्षमता को परिभाषित कीजिए।
 - (ब) यदि व्यतिकरण करने वाली दो प्रकाश तरंगों के आयामों का अनुपात 4:3 हो, तो अधिकतम एवं न्यूनतम तीव्रताओं का अनुपात ज्ञात कीजिए।
 - (A) Define power of lens.
 - (B) If ratio of the amplitudes of the two light waves is 4:3 in interference, then calculate the ratio of the maximum to minimum intensities.

अथवा/OR

1+2=3

- (अ) विभेदन क्षमता को परिभाषित कीजिए।
- (ब) एक खगोलीय दूरदर्शी के अभिदृश्यक और अभिनेत्र लेंस की क्षमताएँ क्रमश: 4D एवं 24D हैं। यदि अन्तिम प्रतिबिम्ब अनन्त पर बनता है तो दूरदर्शी की आवर्धन क्षमता ज्ञात कीजिए।
- (A) Define resolving power.
- (B) The power of objective and eye-piece are 4D and 24D respectively in an astronomical telescope. If final image formed at infinity then calculate the 1+2=3magnifying power of telescope.
- 19. हाइड्रोजन स्पेक्ट्रम में पाशन श्रेणी की न्यूनतम तरंगदैर्ध्य का मान ज्ञात कीजिए। यह स्पेक्ट्रम के किस क्षेत्र में प्राप्त होती है ? (रिडबर्ग नियतांक $R = 1.097 \times 10^7 \text{m}^{-1}$)

Calculate the value of minimum wavelength of Paschen series in H-spectrum. In which region these lines found in spectrum ? (Rydberg constant $R = 1.097 \times 10^7 \text{m}^{-1}$) 2+1=3

अथवा/OR

हाइड्रोजन स्पेक्ट्रम में बामर श्रेणी की रेखाओं की अधिकतम तरंगदैर्ध्य और स्थितम तरंगदैर्ध्य का अनुपात ज्ञात

Calculate the ratio of maximum wavelength and minimum wavelength of Balmer series in H-spectrum.

खण्ड – द

SECTION - D

20. एम्पियर का नियम गणितीय रूप में लिखिए । एक आवेशित कण एकसमान चुम्बकीय क्षेत्र से θ कोण ($0^{\circ} < \theta < 90^{\circ}$) बनाते हुए गतिमान है । इसके आवर्तकाल एवं चूड़ी अन्तराल के लिए सूत्र प्राप्त कीजिए । आवश्यक चित्र

Write Ampere's law in mathematical form. A charged particle is in motion, making an write Ampere's law in magnetic field. Obtain the formula for its time period angle θ (0° < θ < 90°) with uniform magnetic field. Obtain the formula for its time period 1+1+1+1=4 and pitch. Draw necessary diagram.

अथवा/OR

बायो-सावर्ट नियम का सूत्र सदिश रूप में लिखिए। किसी धारावाही वृत्ताकार कुण्डली के अक्ष पर स्थित किसी बिन्दु पर चुम्बकीय क्षेत्र का सूत्र व्युत्पन्न कीजिए। आवश्यक चित्र बनाइए।

।बन्दु पर चुम्बकीय क्षेत्र का सूत्र जुः ... Write the formula of Biot - Savart's Law in vector form. Derive the formula of magnetic Write the formula of Biot - Sava for a current carrying circular coil. Draw necessary field at any point on the axis for a current carrying circular coil. 1+2+1=4 diagram.

SS-40-Phy.

Turn over

3

- 21. (अ) ऊर्जा बैण्ड के आधार पर चालक, कुचालक एवं अर्धचालक में अन्तर स्पष्ट कीजिए।
 - (ब) P-N संधि डायोड का अभिलाक्षणिक वक्र बनाइए।
 - (A) Distinguish clearly between conductor, insulator and semiconductor on the basis of energy band theory.
 - (B) Draw characteristic curve of P-N junction diode.

1+1+1+1=4

अथवा/OR

उभयनिष्ठ आधार विन्यास में PNP ट्रांजिस्टर का अभिलाक्षणिक वक्र प्राप्त करने के लिए परिपथ चित्र बनाइए । निर्गत अभिलाक्षणिक वक्र बनाकर, इसको समझाइए ।

Draw circuit diagram for a PNP transistor to obtain characteristic curves in common base configuration. Draw output characteristic curve and explain.

1+1+2=4

खण्ड - य

SECTION - E

22. संधारित्र किसे कहते हैं ? सिद्ध कीजिए कि दो आवेशित चालकों को नगण्य धारिता के चालक तार से जोड़ दें तो उनके विभव में परिवर्तन का अनुपात उनकी धारिताओं के अनुपात के व्युत्क्रमानुपाती होता है । आवश्यक चित्र बनाइए ।

What is a capacitor? Prove that if two charged conductors connected by a conducting wire of negligible capacity then the ratio of change in their potential is inversely proportional to ratio of their capacities. Draw necessary diagram.

1+2+1=4

अथवा/OR

स्थिर-वैद्युतिकी में गाउस का नियम लिखिए। इस नियम से एक समरूप आवेशित अपरिमित चालक पट्टिका के कारण उसके निकट किसी बिन्दु पर विद्युत क्षेत्र की तीव्रता का व्यंजक व्युत्पन्न कीजिए। आवश्यक चित्र बनाइए।

State Gauss' law in electrostatic. Using this law derive an expression for intensity of electric field at any point near to a uniformly charged infinite conducting plate. Draw necessary diagram.

1+2+1=4

अथवा/OR

55-40-Phy.

विद्युत क्षेत्र की तीव्रता को परिभाषित कीजिए । विद्युत द्विध्रुव के कारण अक्षीय रेखा पर स्थित किसी बिन्दु पर विद्युत क्षेत्र की तीव्रता का सूत्र प्राप्त कीजिए । आवश्यक चित्र बनाइए ।

Define intensity of electric field. Obtain the formula for the intensity of electric field at a point on the axial line due to the electric dipole. Draw necessary diagram. 1+2+1=4

प्रकाश के व्यतिकरण के लिए कोई दो आवश्यक शर्तें लिखिए । यंग द्विस्लिट प्रयोग में व्यतिकरण फ्रिंजों की चौडाई ज्ञात करने का सूत्र प्राप्त कीजिए । आवश्यक चित्र बनाइए ।

Write any two necessary conditions for interference of light. Obtain the formula for fringe width in Young's double slit experiment. Draw necessary diagram. 1+2+1=4

अथवा/OR

प्रिज्म से प्रकाश के अपवर्तन का किरण चित्र बनाइए । सिद्ध कीज़िए कि प्रिच्म के पदार्थ का अपवर्तनांक $\sin\!\left(\frac{A+\delta_m}{2}\right)$

$$\eta = \frac{\sin\left(\frac{A + \delta_m}{2}\right)}{\sin\frac{A}{2}}.$$

जहाँ संकेतों के सामान्य अर्थ हैं।

Draw ray diagram for refraction of light by prism. Prove that refractive index of prism

$$\eta = \frac{\sin\left(\frac{A + \delta_m}{2}\right)}{\sin\frac{A}{2}}.$$

where symbols carry their usual meanings.

1+3=4

अथवा/OR

प्रकाश का विवर्तन किसे कहते हैं ? हाइगेंस के तरंग सिद्धान्त के आधार पर प्रकाश अपवर्तन नियमों की व्याख्या कीजिए । आवश्यक किरण चित्र बनाइए ।

What is diffraction of light'? Explain laws of refraction of light on the basis of Huygens wave theory. Draw necessary ray diagram. 1+2+1=4

CONFIDENTIAL

DO NOT WRITE AND THE REAL PROPERTY OF WARRIED AND THE PROPERTY OF THE PARTY OF THE