
MARKING SCHEME

Senior Secondary School Examination TERM-II, 2022

PHYSICS (Subject Code-042)

[Paper Code : 55/1/1]

Q. No.	EXPECTED ANSWER / VALUE POINTS	Marks	Total Marks
	SECTION—A		
1.	Energy band diagram $\frac{1}{2} + \frac{1}{2}$ Significance1		
	E_{c} E_{c} E_{v} E_{v	1/2 + 1/2	
	n-type p-type		
	Significance n-type semiconductors – small energy gap between donor level and conduction band which can be easily covered by thermally excited electrons.	1/2	
	p- type semiconductors - small energy gap between acceptor level and valence band which can be easily covered by thermally excited electrons.	1/2	
	Alternatively The conductivity of semiconductor is improved with the creation of donor and acceptor levels.		2

Download from www.MsEducationTv @0557(1/1_Physics # Page-4

3.			
	Explanation 2		
	The unidirectional property of a diode makes it suitable for rectification. Alternatively	2	
	The diode conducts when forward biased and does not conduct when reverse biased.		
	(Award 1 mark if a student draws the forward and reverse characteristics of a diode.)		2
	SECTION- B		
4.	Definition of distance of closest approach1 ½Effect on distance of closest approach due to change in K.E.1 ½		
	The minimum distance up to which an alpha particle travel along the central line of the nucleus before it rebounds is called distance of closest approach.	1 1⁄2	
	Alternatively		
	An alpha particle travelling directly towards the centre of a nucleus slows down as it approaches the nucleus due to repulsive force. At a distance r_0 from the nucleus, the α - particle stops and its total kinetic energy converts into electrostatic potential energy. This distance r_0 is called distance of closest approach.		
	$r_0 = \frac{2Ze^2}{4\pi \in_0 K.E.}$	1⁄2	
	i.e., $r_0 \propto \frac{1}{K.E.}$	1/2	
	as K is doubled, r_0 is halved.	1⁄2	
	(Award full $1\frac{1}{2}$ marks if a student writes r_0 is halved without writing formula)		3
5.	Finding distance from source2Finding nature of image1		
	Relation for concave spherical surface		
	$\frac{\mu_1}{-u} + \frac{\mu_2}{v} = \frac{\mu_2 - \mu_1}{R}$	1/2	
	$\frac{1}{-u} + \frac{\mu}{v} = \frac{\mu - 1}{R}$	1⁄2	
	$\frac{1}{-(-24)} + \frac{1 \cdot 5}{v} = \frac{1 \cdot 5 - 1}{-60}$	1⁄2	

Download from www.MsEducationTvotopp(1/1_Physics # Page-5

	Distance of image from point source = $-24 - (-30) = 6$ cm	1/2	3
	Nature of image = Virtual image	1	
6.	Calculation of mass defect2Calculation of energy released1		
	$^{2}_{1}\text{H} + ^{3}_{1}\text{H} \rightarrow ^{4}_{2}\text{He} + n + Energy$		
	Mass defect = mass of reactants – mass of products	1/2	
	$\Delta m = m({}^{2}_{1}\text{H} + {}^{3}_{1}\text{H}) - m({}^{4}_{2}\text{He} + {}^{1}_{0}n)$	1⁄2	
	Mass defect = $(2 \cdot 014102 + 3 \cdot 016049) - (4 \cdot 002603 + 1 \cdot 008665)$	1⁄2	
	=5.030151 - 5.011268		
	= 0.018883u	1⁄2	
	Energy released = $\Delta m \times 931.5 \text{ MeV}$ = 0.018883 × 931.5 MeV	1⁄2	
	=17.58 MeV	1⁄2	3
7.	Principle of optical fibre1Diagram of TIR1Use of optical fibre $\frac{1}{2} + \frac{1}{2}$		
	An optical fibre works on the principle of Total internal reflection.	1	
	Rarer Main (Air) 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5	1	
	Low n High n		
	Uses of optical fibres(any two)		
	 i) Medical and optical examination (endoscopy). ii) Transmission and reception of signals iii) Photometric sensors. 	1/2+1/2	3
	Calculation of distance of first minimum 1 ¹ / ₂		

Download from www.MsEducationTv@2550/1/1_Physics # Page-6

(i)
$$y = \frac{\lambda D}{a}$$

= $\frac{600 \times 10^{-9} \times 1}{2}$ ^{1/2}

$$=$$
 $\frac{1}{0.2 \times 10^{-3}}$

$$=3 \times 10^{-3} \text{ m} = 3 \text{ mm}$$

(ii)
$$y = (n + \frac{1}{2})\frac{\lambda D}{a}$$

 $y = (2 + \frac{1}{2})\frac{\lambda D}{a}$

$$y = (2 + \frac{1}{2})\frac{1}{a}$$

5 \lambda D

$$y = \frac{1}{2} - \frac{1}{a}$$
$$y = \frac{5}{2} \times \frac{600 \times 10^{-9} \times 1}{0.2 \times 10^{-3}}$$

$$= 7.5 \times 10^{-3} = 7.5$$
 mm

OR

Finding the ratio of powers 11⁄2 Finding the power of combination and nature 11⁄2

(*i*) From
$$P = (\mu - 1) \left(\frac{1}{R_1} - \frac{1}{R_2} \right)$$

8(b).

$$P_1 = P_{convex} = (\mu - 1) \left(\frac{1}{R_1} - (-\frac{1}{R_2}) \right)$$
$$= (\mu - 1)(\frac{2}{R})$$

$$R$$

$$P_{2} = P_{concave} = (\mu - 1) \left(-\frac{1}{R_{1}} - \frac{1}{R_{2}} \right)$$

$$= -(\mu - 1)(\frac{2}{R})$$

$$\therefore \frac{P_1}{P_2} = \frac{(\mu_1 - 1)}{-(\mu_2 - 1)} = \frac{(\mu_1 - 1)}{(1 - \mu_2)}$$

(ii)
$$P = P_1 + P_2$$

$$= (\mu_1 - 1) \left(\frac{2}{R}\right) + (-(\mu_2 - 1)) \left(\frac{2}{R}\right)$$

$$P = \frac{2(\mu_1 - \mu_2)}{R}$$
As $\mu_2 > \mu_1$, P is negative

3

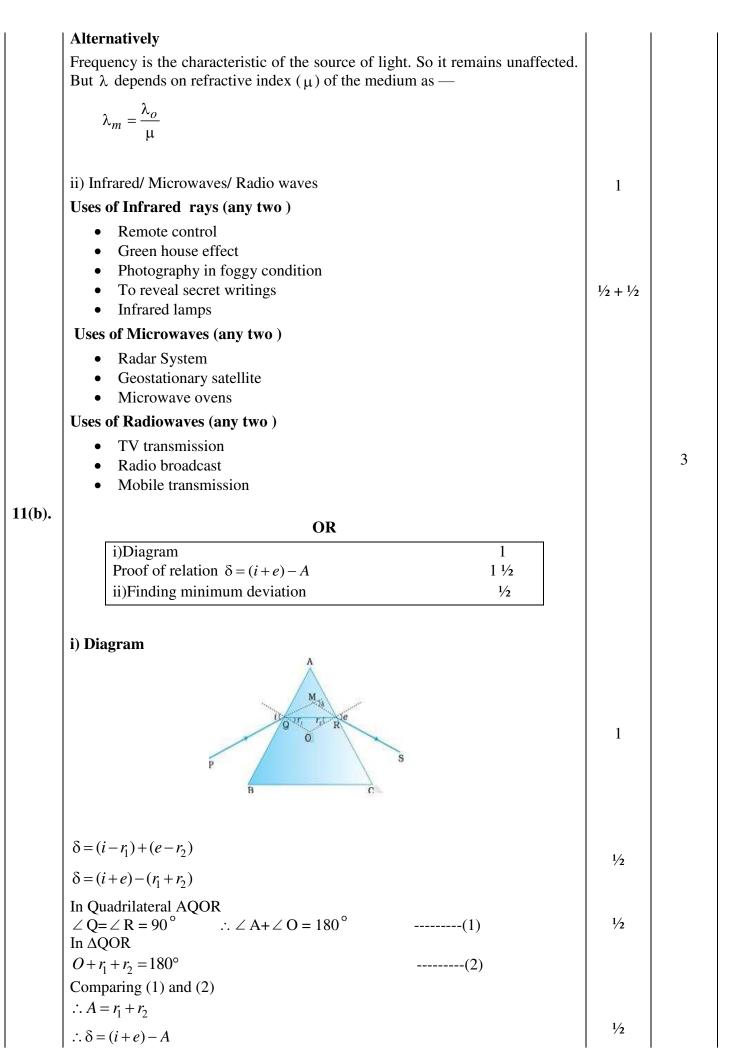
1⁄2

1⁄2

1⁄2

1⁄2

1⁄2


1⁄2

1⁄2

1⁄2

1⁄2 1⁄2 3 Download from www.MsEducationTv@pp/1/1_Physics # Page-7

1			
9.	i) Calculation of energy of Radiation $1\frac{1}{2}$		
	ii) Calculation of kinetic energy of photoelectron 1 ¹ / ₂		
	i) Energy of incident radiation		
	$E = hv = h\frac{c}{\lambda}$	1⁄2	
	$=\frac{6\cdot63\times10^{-34}\times3\times10^{8}}{330\times10^{-9}}$	1/2	
	$= 6 \cdot 027 \times 10^{-19} $ J	1⁄2	
	ii) Kinetic energy of photoelectron		
	$K.E. = E - \phi_0$	1⁄2	
	$= (6 \cdot 027 \times 10^{-19} - 3 \cdot 5 \times 10^{-19}) $ J	1⁄2	
	$= 2 \cdot 527 \times 10^{-19} $ J	1⁄2	3
10.	Statement of working principle of LED 1		
	Advantages $\frac{1}{2} + \frac{1}{2}$ Disadvantages $\frac{1}{2} + \frac{1}{2}$		
	When the diode is forward biased, electrons are sent from n region to p region and holes are sent from p region to n region. At the junction the concentration		
	of minority carriers increases. Thus at the junction, the excess minority carriers	1	
	recombine with majority carriers and energy is released in the form of photons.	-	
	Advantages (any two):		
	(i) Low operational voltage		
	(<i>ii</i>) Less power consumption	1/2+1/2	
	(iii) Fast action	, , _	
	(<i>iv</i>) Long life and ruggedness		
	Disadvantages (any two) :		
	(i) High cost (i)		
	(<i>ii</i>) Can get damaged due to overheating	1/2+1/2	
	(iii) Excess of voltage or current can damage LED		3
	(Note: Award last 1 mark, even if disadvantages are not given.)		
11(a).	i) Reason 1		
	i) Identification of radiation		
	Uses $\frac{1}{2} + \frac{1}{2}$		
	i) Refraction arises through interaction of incident light with the atomic		
	constituents of matter. Atoms may be viewed as oscillators which take up the	1	
	frequency of the external agency causing forced oscillations. Thus the	1	
	frequency of refracted light equals the frequency of incident light.		

Download from www.MsEducationTv@0550/1/1_Physics # Page-9

	ii) If a ray passes symmetrically through a prism (parallel to base of prism), the value of angle of deviation is minimum. At this angle $\angle i = \angle e$ and $\angle r_1 = \angle r_2$	1⁄2	3
	SECTION- C		
12.	I (B)	1	
	II (C)	1	
	III (D)	1	
	IV (C)	1	
	V (C)	1	5

* * *

Download from www.MsEducationTv4con1/1_Physics # Page-10