### Senior School Certificate Examination 2018 Marking Scheme ------ Chemistry

#### **General Instructions**

- The Marking Scheme provides general guidelines to reduce subjectivity in the marking. The answers given in the Marking Scheme are Suggested answers. The content is thus indicative. If a student has given any other answer which is different from the one given in the Marking Scheme, but conveys the same meaning, such answers should be given full weight-age.
- 2. The Marking Scheme carries only suggested value point for the answers. These are only guidelines and do not constitute the complete answers. The students can have their own expression and if the expression is correct the marks will be awarded accordingly.
- 3. The Head-Examiners have to go through the first five answer-scripts evaluated by each evaluator to ensure that the evaluation has been carried out as per the instruction given in the marking scheme. The remaining answer scripts meant for evaluation shall be given only after ensuring that there is no significant variation in the marking of individual evaluators.
- 4. Evaluation is to be done as per instructions provided in the Marking Scheme. It should not be done according to one's own interpretation or any other consideration Marking Scheme should be strictly adhered to and religiously followed.
- 5. If a question has parts, please award marks in the right hand side for each part. Marks awarded for different parts of the question should then be totaled up and written in the left hand margin and circled.
- 6. If a question does not have any parts, marks be awarded in the left-hand margin.
- 7. If a candidate has attempted an extra question, marks obtained in the question attempted first should be retained and the other answer should be scored out.
- 8. No Marks to be deducted for the cumulative effect of an error. It should be penalized only once.
- 9. A full scale of marks 0-70 has to be used. Please do not hesitate to award full marks if the answer deserves it.
- 10. Separate marking schemes for all the three sets have been provided.
- 11. As per orders of the Hon'ble Supreme Court. The candidate would now be permitted to obtain photocopy of the Answer Book on request on payment of the prescribed fee. All examiner/Head Examiners are once again reminded that they must ensure that evaluation is carried out strictly as per value points for each answer as given in the Marking Scheme.
- 12. The Examiners should acquaint themselves with the guidelines given in the Guidelines for sport Evaluation before starting the actual evaluation.
- 13. Every Examiner should stay upto sufficiently reasonable time normally 5-6 hours every day and evaluate 20-25 answer books and should minimum 15-20 minutes to evaluate each answer book.
- 14. Every Examiner should acquaint himself/herself with the marking schemes of all the sets.

### Marking Scheme – 2017-18

### CHEMISTRY (043)/ CLASS XII

### <u>56/1</u>

| <ol> <li>Shows metal deficiency defect / It is a mixture of Fe<sup>2+</sup> and Fe<sup>3+</sup>/Some Fe<sup>2+</sup> ions replaced by Fe<sup>3+</sup> / Some of the ferrous ions get oxidised to ferric ions.</li> <li>Selectivity of a catalyst</li> </ol> | are 1     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| 2 Selectivity of a catalyst                                                                                                                                                                                                                                 |           |
|                                                                                                                                                                                                                                                             | 1         |
| 3 Coordination Number = 6, Oxidation State = +2                                                                                                                                                                                                             | 1/2, 1/2  |
| 4 Benzyl chloride ;                                                                                                                                                                                                                                         | 1/2       |
| Due to resonance, stable benzyl carbocation is formed.                                                                                                                                                                                                      | 1/2       |
| 5 3,3 - Dimethylpentan-2-ol                                                                                                                                                                                                                                 | 1         |
| $\delta \qquad \Delta T_f = K_f m$                                                                                                                                                                                                                          |           |
| $= K_f w_2 x1000$                                                                                                                                                                                                                                           | 1/2       |
| $\overline{M}_2 x w_1$                                                                                                                                                                                                                                      |           |
| = <u>1.86 x 60 x 1000</u>                                                                                                                                                                                                                                   |           |
| 180x250                                                                                                                                                                                                                                                     | 1/2       |
| = 2.48 K                                                                                                                                                                                                                                                    | 1/2       |
| $\Delta T_{f} = T_{f}^{o} - T_{f}$                                                                                                                                                                                                                          |           |
| $2.48 = 273.15 - T_f$                                                                                                                                                                                                                                       |           |
| T <sub>f</sub> = 270.67 K / 270.52 K / - 2.48 °C                                                                                                                                                                                                            | 1/2       |
| 7 $Rate = \frac{1}{4} \frac{\Delta(NO2)}{\Delta(t)} = -\frac{1}{2} \frac{\Delta(N_2O_5)}{\Delta(t)}$                                                                                                                                                        | 1/2       |
| $\frac{4}{1} \frac{\Delta(t)}{\Delta(t)} = \frac{2}{1} \frac{\Delta(t)}{\Delta(N_0)(t)}$                                                                                                                                                                    |           |
| $\frac{1}{4} (2.8 \times 10^{-3}) = -\frac{1}{2} \frac{\Delta (N_2 O_5)}{\Delta (t)}$                                                                                                                                                                       | 1/2       |
| Rate of disappearance of N <sub>2</sub> O <sub>5</sub> ( $-\frac{\Delta (N_2 O_5)}{\Delta (t)}$ ) = 1.4 × 10 <sup>-3</sup> M/s                                                                                                                              | 1         |
| (Deduct half                                                                                                                                                                                                                                                | mark      |
| if unit is wrong or not written)                                                                                                                                                                                                                            | 1/        |
| 8 (a)PH <sub>3</sub>                                                                                                                                                                                                                                        | 1/2<br>1/ |
| (b)NH <sub>3</sub>                                                                                                                                                                                                                                          | 1/2       |
| (c)NH <sub>3</sub>                                                                                                                                                                                                                                          | 1/2       |
| $(d)BiH_3$                                                                                                                                                                                                                                                  | 1/2       |
| 9 (a)CH <sub>3</sub> CHO (i)CH <sub>3</sub> MgBr, Dry ether(ii)H <sub>2</sub> O/H <sup>+</sup> CH <sub>3</sub> CH(OH)CH <sub>3</sub> CrO <sub>3</sub> CH <sub>3</sub> COCH <sub>3</sub>                                                                     | 1         |
| (b)                                                                                                                                                                                                                                                         |           |
| o CH                                                                                                                                                                                                                                                        |           |
| COOH KMnO <sub>4</sub> -KOH                                                                                                                                                                                                                                 |           |
| $H_{4}O^{+}$                                                                                                                                                                                                                                                | 1         |
| (or any other correct n                                                                                                                                                                                                                                     | nethod)   |
| OR                                                                                                                                                                                                                                                          |           |
| <ul> <li>9 (a) because the carboxyl group is deactivating and the catalyst aluminius chloride (Lewis acid) gets bonded to the carboxyl group</li> </ul>                                                                                                     | m 1       |
| (b) Nitro group is an electron withdrawing group (-I effect) so it stabilises<br>carboxylate anion and strengthens the acid / Due to the presence of<br>electron withdrawing Nitro group (-I effect).                                                       |           |
|                                                                                                                                                                                                                                                             |           |

|     |                                                                                                                                                                                                                      | 1   |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|     |                                                                                                                                                                                                                      |     |
|     | (a)                                                                                                                                                                                                                  |     |
| 10. |                                                                                                                                                                                                                      |     |
| 10. | $5Fe^{2+} + MnO_{4} + 8H^{+} - Mn^{2+} + 4H_{2}O + 5Fe^{3+}$                                                                                                                                                         | 1   |
|     |                                                                                                                                                                                                                      | 1   |
|     | (b)                                                                                                                                                                                                                  |     |
|     |                                                                                                                                                                                                                      |     |
|     | $2MnO_4 + H_2O + \Gamma \longrightarrow 2MnO_2 + 2OH + IO_3$                                                                                                                                                         | 1   |
|     | (Helf were to be deducted in each equation for not belowing)                                                                                                                                                         | -   |
| 11  | (Half mark to be deducted in each equation for not balancing)                                                                                                                                                        | 1   |
| 11  | (a) As compared to other colligative properties, its magnitude is large even for<br>very dilute solutions / macromolecules are generally not stable at higher                                                        | 1   |
|     | temperatures and polymers have poor solubility / pressure measurement is                                                                                                                                             |     |
|     | around the room temperature and the molarity of the solution is used                                                                                                                                                 |     |
|     | instead of molality.                                                                                                                                                                                                 | 1   |
|     | (b) Because oxygen is more soluble in cold water or at low temperature.                                                                                                                                              | 1   |
|     | (c) Due to dissociation of KCI / KCI (aq) $\rightarrow$ K <sup>+</sup> + Cl <sup>-</sup> , i is nearly equal to 2                                                                                                    | -   |
| 12  | $d = \frac{zM}{z}$                                                                                                                                                                                                   |     |
|     | $d = \frac{z M}{a^3 N_A}$                                                                                                                                                                                            | 1/2 |
|     | - 4×40                                                                                                                                                                                                               | 1/  |
|     | $= \frac{4 \times 40}{(4 \times 10^{-8})^3 \times 6.022 \times 10^{23}}$                                                                                                                                             | 1/2 |
|     | $= 4.15 \text{ g/cm}^3$                                                                                                                                                                                              | 1/2 |
|     | No of unit cells = total no of atoms /4                                                                                                                                                                              | 1/2 |
|     | $=\left[\frac{4}{10} \times 6.022 \times 10^{23}\right] / 4$                                                                                                                                                         | 1/2 |
|     | $=\left[\frac{4}{40} \times 6.022 \times 10^{23}\right] / 4$<br>=1.5 ×10 <sup>22</sup>                                                                                                                               | 1/2 |
|     | (Or any other correct method)                                                                                                                                                                                        |     |
| 13  |                                                                                                                                                                                                                      |     |
|     | k <sub>2</sub> = 0.693 / 20,                                                                                                                                                                                         | 1/2 |
|     | $k_1 = 0.693/40$                                                                                                                                                                                                     | 1/2 |
|     | $\log \frac{k_2}{k_1} = \frac{E_a}{2.303R} \left[ \frac{1}{T_1} - \frac{1}{T_2} \right]$                                                                                                                             |     |
|     | 1 1 2                                                                                                                                                                                                                | 1/2 |
|     | $k_2/k_1 = 2$                                                                                                                                                                                                        |     |
|     | $\log 2 = \frac{E_a}{2.303 \times 8.314} \left[\frac{320 - 300}{320 \times 300}\right]$                                                                                                                              | 1/2 |
|     |                                                                                                                                                                                                                      |     |
|     | Ea = 27663.8 J/mol or 27.66 kJ/ mol                                                                                                                                                                                  | 1   |
| 14  | (a)Peptisation occurs / Colloidal solution of $Fe(OH)_3$ is formed                                                                                                                                                   | 1   |
|     | (b)Coagulation occurs                                                                                                                                                                                                | 1   |
|     | (c)Demulsification or breaks into constituent liquids                                                                                                                                                                | 1   |
| 15  | $(A_{ij}(z) + QONT(zz) + QUO(zz) + Q(zz))$                                                                                                                                                                           | 1   |
| 13  | $4\mathrm{Au}(\mathrm{s}) + 8\mathrm{CN}^{-}(\mathrm{aq}) + 2\mathrm{H}_{2}\mathrm{O}(\mathrm{aq}) + \mathrm{O}_{2}(\mathrm{g}) \rightarrow$                                                                         | 1   |
|     | $4[Au(CN)_2](aq) + 4OH(aq)$                                                                                                                                                                                          |     |
|     | $\Omega[\Lambda_{12}(ON)] \Gamma(\alpha \alpha) + T_{12}(\alpha) + \Omega[\Lambda_{12}(\alpha)] + [T_{12}(ON)]^{2}(\alpha \alpha)$                                                                                   |     |
|     | $2[\operatorname{Au}(\operatorname{CN})_2]^{-}(\operatorname{aq}) + \operatorname{Zn}(\operatorname{s}) \to 2\operatorname{Au}(\operatorname{s}) + [\operatorname{Zn}(\operatorname{CN})_4]^{2-}(\operatorname{aq})$ | 1   |
|     |                                                                                                                                                                                                                      | -   |
|     | (No marks will be deducted for not balancing)                                                                                                                                                                        |     |
|     |                                                                                                                                                                                                                      |     |
|     | NaCN leaches gold/NaCN acts as a leacing agent / complexing agent                                                                                                                                                    | 1/2 |
|     | Zn acts as reducing agent / Zn displaces gold.                                                                                                                                                                       | 1/2 |
| 16  | (a) The comparatively high value for Mn shows that $Mn^{2+}(d^5)$ is particularly                                                                                                                                    | 1   |
|     | stable / Much larger third ionisation energy of Mn (where the required change is from                                                                                                                                |     |
|     | scape / which larger think formsation energy of win (where the required change is from                                                                                                                               |     |

| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b></b> | $d^5$ to $d^4$ )                                                                         |           |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------------------------------------------------------------------------------------------|-----------|
| (c)Absence of unpaired d-lectron in Sc <sup>3+</sup> whereas in Ti <sup>3+</sup> there is one unpaired<br>electron or Ti <sup>3+</sup> shows d-d transition.117(a) (i) / or1(a) (i) / or1(b) for CH4,<br>(c) for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |                                                                                          | 1         |
| electron or Tl <sup>3+</sup> shows d-d transition.17+ + + + + + + + + + + + + + + + + + +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |                                                                                          |           |
| 17       Image: the set of the set o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |                                                                                          | 1         |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 17      |                                                                                          | 1         |
| $ \begin{array}{c} (a)  (b)  f \\ (c)  $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1,      | $\sim$                                                                                   | -         |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         | (a) (i) /                                                                                |           |
| $ \begin{array}{c} \left( c \right) & 1 \\ c \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         | (b)                                                                                      | 1         |
| $ \begin{array}{ c c c c c } \hline & & & & & & & \\ \hline & & & & & & & \\ \hline & & & &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         | CH <sub>3</sub>                                                                          |           |
| $ \begin{array}{ c c c c c } \hline & & & & & & & \\ \hline & & & & & & & \\ \hline & & & &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         |                                                                                          |           |
| $ \begin{array}{ c c c c c } \hline & & & & & & & & & & & & & & & & & & $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         | (c)                                                                                      | 1         |
| 18(a)<br>A = CH_3CH_2CH_2CH0<br>B = CH_3COCH_5CH3<br>C = (CH_3)_2CHCH0<br>D = CH_3CH_2CH2CH3<br>(b)%<br>%<br>%<br>%<br>%<br>(c)19.(i)<br>$-1^{\text{CH}} - \frac{1}{6} - \text{oct}_{\text{H}_{\text{C}}}$<br>(ii) $C_8H_5CH(OH)CH3(iii) C_8H_5CH(OH)CH3(iii) C_2H_5I + C_6H_5OH (No splitting of marks)120.a) To impart antiseptic propertiesb) 2-3% solution of iodine in alcohol – water mixture / iodine dissolved inalcohol , used as an antiseptic/ applied on wounds.c) Sodium benzoate / Aspartame121(a) Zarbohydrates that give large number of monosaccharide units on hydrolysis /large number of monosaccharides units joined together by glycosidic linkageStarch/glycogen/ cellulose (or any other)(c)Amino acids which cannot be synthesised in the body.Valine / Leucine (or any other)%%%%121(a)Saccharic acid / COOH-(CHOH)_4-COOH(b)Due to the presence of carboxyl and amino group in the same molecule / due toformation of zwitter ion or dipolar ion.(c)a-helix has intramolecular hydrogen bonding / a-helix results due to regular coiling of polypeptide chainswhile in β pleated all polypeptide chains are stretched and arranged side by side.122(a) Concerned about environment, caring, socially alert, law abiding citizen ( or anythe splice ( or anythe splice ( or anythe splice ( or any and the splice ( or anythe splice ( or any other))(c) Amino acids which cannot be synthesised in the body.123(a) Concerned abut environment, caring, socially alert, law abiding citizen ( or any1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         | CH3                                                                                      |           |
| 18       (a)       A= CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> CHO<br>B = CH <sub>3</sub> COCH <sub>2</sub> CHO<br>D= CH <sub>3</sub> CCH <sub>2</sub> CH <sub>3</sub> CHOHO<br>D= CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> %         19.       (i)       1         (ii) $G_{e}(H_{e},G_{e})$ 1         (iii)       C <sub>8</sub> H <sub>5</sub> CH(OH)CH <sub>3</sub> 1         (iii)       C <sub>8</sub> H <sub>5</sub> CH(OH)CH <sub>3</sub> 1         (iii)       C <sub>8</sub> H <sub>5</sub> CH(OH)CH <sub>3</sub> 1         (iii)       C <sub>8</sub> H <sub>5</sub> CH (OH)CH <sub>3</sub> 1         (iii)       C <sub>8</sub> H <sub>5</sub> CH (OH)CH <sub>3</sub> 1         (iii)       C <sub>8</sub> H <sub>5</sub> CH (OH)CH <sub>3</sub> 1         (iii)       C <sub>8</sub> H <sub>5</sub> CH (OH)CH <sub>3</sub> 1         (iii)       C <sub>8</sub> H <sub>5</sub> CH (OH)CH <sub>3</sub> 1         (iii)       C <sub>8</sub> H <sub>5</sub> CH (OH)CH <sub>3</sub> 1         (iii)       C <sub>8</sub> H <sub>5</sub> CH (OH)CH <sub>3</sub> 1         (iii)       C <sub>8</sub> H <sub>5</sub> CH (OH)CH <sub>3</sub> 1         (iii)       C <sub>8</sub> H <sub>5</sub> CH (OH)CH <sub>3</sub> 1         (iii)       C <sub>8</sub> H <sub>5</sub> CH (OH)CH <sub>3</sub> 1         (iii)       C <sub>8</sub> H <sub>5</sub> CH (OH)CH <sub>3</sub> 1         (iii)       C <sub>8</sub> H <sub>5</sub> CH (OH)CH <sub>3</sub> 1         (iii)       C <sub>8</sub> H <sub>5</sub> CH (OH)CH <sub>3</sub> 1         (iii)       C <sub>8</sub> H <sub>5</sub> CH (OH)CH <sub>3</sub> 1         (iii)       C <sub>8</sub> H <sub>5</sub> CH (OH)CH <sub>3</sub> 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |                                                                                          |           |
| 18       (a)       A= CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> CHO<br>B = CH <sub>3</sub> COCH <sub>2</sub> CHO<br>D= CH <sub>3</sub> CCH <sub>2</sub> CH <sub>3</sub> CHOHO<br>D= CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> %         19.       (i)       1         (ii) $G_{e}(H_{e},G_{e})$ 1         (iii)       C <sub>8</sub> H <sub>5</sub> CH(OH)CH <sub>3</sub> 1         (iii)       C <sub>8</sub> H <sub>5</sub> CH(OH)CH <sub>3</sub> 1         (iii)       C <sub>8</sub> H <sub>5</sub> CH(OH)CH <sub>3</sub> 1         (iii)       C <sub>8</sub> H <sub>5</sub> CH (OH)CH <sub>3</sub> 1         (iii)       C <sub>8</sub> H <sub>5</sub> CH (OH)CH <sub>3</sub> 1         (iii)       C <sub>8</sub> H <sub>5</sub> CH (OH)CH <sub>3</sub> 1         (iii)       C <sub>8</sub> H <sub>5</sub> CH (OH)CH <sub>3</sub> 1         (iii)       C <sub>8</sub> H <sub>5</sub> CH (OH)CH <sub>3</sub> 1         (iii)       C <sub>8</sub> H <sub>5</sub> CH (OH)CH <sub>3</sub> 1         (iii)       C <sub>8</sub> H <sub>5</sub> CH (OH)CH <sub>3</sub> 1         (iii)       C <sub>8</sub> H <sub>5</sub> CH (OH)CH <sub>3</sub> 1         (iii)       C <sub>8</sub> H <sub>5</sub> CH (OH)CH <sub>3</sub> 1         (iii)       C <sub>8</sub> H <sub>5</sub> CH (OH)CH <sub>3</sub> 1         (iii)       C <sub>8</sub> H <sub>5</sub> CH (OH)CH <sub>3</sub> 1         (iii)       C <sub>8</sub> H <sub>5</sub> CH (OH)CH <sub>3</sub> 1         (iii)       C <sub>8</sub> H <sub>5</sub> CH (OH)CH <sub>3</sub> 1         (iii)       C <sub>8</sub> H <sub>5</sub> CH (OH)CH <sub>3</sub> 1         (iii)       C <sub>8</sub> H <sub>5</sub> CH (OH)CH <sub>3</sub> 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |                                                                                          |           |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |                                                                                          |           |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 18      |                                                                                          |           |
| $ \begin{array}{c c} C = (CH_3)_2 CHCHO \\ D = CH_3 CH_2 CH_2 CH_3 \\ (b) B \end{array} \qquad \qquad$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |                                                                                          |           |
| $\begin{array}{c c c c c c c c } D=CH_3CH_2CH_2CH_3 & \begin{array}{c} & \begin{array}{c} & \begin{array}{c} & & \begin{array}{c} & & & & \\ & & & & \\ & & & \end{array} \\ \hline \end{array} \\ \\ \hline \end{array} $ \\ \hline \end{array}  \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \\ \hline \end{array} \\ \\ \hline \end{array}  \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \\ \hline \end{array} \\ \hline \end{array}  \\ \hline \end{array} \\ \\ \hline \end{array}  \\ \hline \end{array}  \\ \hline \end{array} \\ \hline \end{array} \\ \hline  \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array}  \\ \hline  \\ \hline \end{array}  \\ \hline  \\ \hline \Biggl  \\ \hline \end{array}  \\ \hline  \\ \hline \end{array}  \\ \hline  \\ \hline  \\ \hline  \\ \hline \end{array}  \\ \hline \end{array}  \\ \hline \end{array}  \\ \hline \end{array}  \\ \hline \end{array} \\ \hline \end{array}  \\ \hline  \\ \hline  \\ \hline  \\ \hline  \\ \hline  \\ \hline  \\ \hline \end{array}  \\ \hline  \\ \hline  \\ \hline \end{array}  \\ \Biggl  \\ \Biggl  \\ \Biggl  \\ \Biggl  \\ \hline  \\ \hline  \\ \hline  \\ \hline  \\ \hline \\  \\  \\ |         |                                                                                          |           |
| (0)       B       1         19.       (i) $(i)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |                                                                                          |           |
| 19.       (i)<br>+ + + + + + + + + + + + + + +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | (b) B                                                                                    |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |                                                                                          |           |
| $ \begin{array}{ c c c c c } & & 1 \\ \hline & & & \\ \hline $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 19.     |                                                                                          |           |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         |                                                                                          |           |
| (ii) $C_6H_5CH(OH)CH_3$ 1(iii) $C_2H_5I + C_6H_5OH$ (No splitting of marks)120.a) To impart antiseptic properties<br>b) 2-3% solution of iodine in alcohol – water mixture / iodine dissolved in<br>alcohol , used as an antiseptic/applied on wounds.<br>c) Sodium benzoate / Aspartame121(a)Carbohydrates that give large number of monosaccharide units on hydrolysis /<br>large number of monosaccharides units joined together by glycosidic linkage<br>Starch/ glycogen/ cellulose (or any other)<br>(b)Proteins that lose their biological activity / proteins in which secondary and<br>tertiary structures are destroyed<br>Curdling of milk (or any other)<br>(c)Amino acids which cannot be synthesised in the body.<br>Valine / Leucine (or any other)<br>(b)Due to the presence of carboxyl and amino group in the same molecule / due to<br>formation of zwitter ion or dipolar ion.<br>(c) $\alpha$ -helix has intramolecular hydrogen bonding while $\beta$ pleated has intermolecular<br>hydrogen bonding $/ \alpha$ -helix results due to regular coiling of polypeptide chains<br>while in $\beta$ pleated all polypeptide chains are stretched and arranged side by side.122(a) Concerned about environment, caring, socially alert, law abiding citizen ( or any<br>$V_2, V_2$ 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |                                                                                          | 1         |
| (ii) $C_{\theta}H_{5}CH(OH)CH_{3}$ 120.a)To impart antiseptic properties1b)2-3% solution of iodine in alcohol – water mixture / iodine dissolved in<br>alcohol , used as an antiseptic/ applied on wounds.<br>c)121(a)Carbohydrates that give large number of monosaccharide units on hydrolysis /<br>large number of monosaccharides units joined together by glycosidic linkage<br>Starch/ glycogen/ cellulose (or any other)<br>(b)Proteins that lose their biological activity / proteins in which secondary and<br>tertiary structures are destroyed<br>Curdling of milk (or any other)<br>( c)Amino acids which cannot be synthesised in the body.<br>Valine / Leucine (or any other)½21(a)Saccharic acid / COOH-(CHOH)_4-COOH<br>(b)Due to the presence of carboxyl and amino group in the same molecule / due to<br>formation of zwitter ion or dipolar ion.<br>( c)a-helix has intramolecular hydrogen bonding while $\beta$ pleated has intermolecular<br>hydrogen bonding of polypeptide chains<br>while in $\beta$ pleated all polypeptide chains are stretched and arranged side by side.122(a) Fe4[Fe (CN)_6]_3<br>( b) lonisation isomerism<br>( c) sp <sup>3</sup> d <sup>2</sup> , 4123(a) Concerned about environment, caring, socially alert, law abiding citizen ( or any1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | ( ) ö                                                                                    |           |
| (iii) $C_2H_5I + C_6H_5OH$ (No splitting of marks)120.a)To impart antiseptic properties<br>b)1b)2-3% solution of iodine in alcohol – water mixture / iodine dissolved in<br>alcohol , used as an antiseptic/ applied on wounds.<br>c)121(a)Carbohydrates that give large number of monosaccharide units on hydrolysis /<br>large number of monosaccharides units joined together by glycosidic linkage<br>Starch/ glycogen/ cellulose (or any other)<br>(b)Proteins that lose their biological activity / proteins in which secondary and<br>tertiary structures are destroyed<br>Curdling of milk (or any other)<br>( c)Amino acids which cannot be synthesised in the body.<br>Valine / Leucine (or any other)½21(a)Saccharic acid / COOH-(CHOH)_4-COOH<br>(b)Due to the presence of carboxyl and amino group in the same molecule / due to<br>formation of zwitter ion or dipolar ion.<br>( c)a- helix has intramolecular hydrogen bonding while $\beta$ pleated has intermolecular<br>hydrogen bonding / $\alpha$ - helix results due to regular coiling of polypeptide chains<br>while in $\beta$ pleated all polypeptide chains are stretched and arranged side by side.122(a) Fe4[Fe (CN)_6]_3<br>( b) lonisation isomerism<br>( c) sp <sup>3</sup> d <sup>2</sup> , 4123(a) Concerned about environment, caring, socially alert, law abiding citizen ( or any1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         | (ii) CeH <sup>2</sup> CH(OH)CH <sup>3</sup>                                              | 1         |
| (iii)       C2Pt5I + C6Pt5OH (No Splitting of marks)         20.       a)       To impart antiseptic properties       1         b)       2-3% solution of iodine in alcohol – water mixture / iodine dissolved in alcohol , used as an antiseptic/ applied on wounds.       1         21       (a)Carbohydrates that give large number of monosaccharide units on hydrolysis / large number of monosaccharides units joined together by glycosidic linkage Starch/glycogen/ cellulose (or any other)       ½         (b)Proteins that lose their biological activity / proteins in which secondary and tertiary structures are destroyed Curdling of milk (or any other)       ½         (c)Amino acids which cannot be synthesised in the body.       ½         Valine / Leucine (or any other)       ½         (b)Due to the presence of carboxyl and amino group in the same molecule / due to formation of zwitter ion or dipolar ion.       1         (c)Ca-helix has intramolecular hydrogen bonding while β pleated has intermolecular hydrogen bonding / α- helix results due to regular coiling of polypeptide chains while in β pleated all polypeptide chains are stretched and arranged side by side.       1         22       (a) Concerned about environment, caring, socially alert, law abiding citizen (or any       1         3       (a) Concerned about environment, caring, socially alert, law abiding citizen (or any       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |                                                                                          | 1         |
| b)2-3% solution of iodine in alcohol – water mixture / iodine dissolved in<br>alcohol , used as an antiseptic/ applied on wounds.<br>c) $y_2$ , $y_2$ 21(a)Carbohydrates that give large number of monosaccharide units on hydrolysis /<br>large number of monosaccharides units joined together by glycosidic linkage<br>Starch/glycogen/ cellulose (or any other)<br>(b)Proteins that lose their biological activity / proteins in which secondary and<br>tertiary structures are destroyed<br>Curdling of milk (or any other)<br>( c)Amino acids which cannot be synthesised in the body.<br>Valine / Leucine (or any other) $y_2$<br>$y_4$ 21(a)Saccharic acid / COOH-(CHOH)_4-COOH<br>(b)Due to the presence of carboxyl and amino group in the same molecule / due to<br>formation of zwitter ion or dipolar ion.<br>( c)a- helix has intramolecular hydrogen bonding / $\alpha$ - helix results due to regular coiling of polypeptide chains<br>while in $\beta$ pleated all polypeptide chains are stretched and arranged side by side.122(a) Fe4[Fe (CN)_6]_3<br>( b) Ionisation isomerism<br>( c) sp <sup>3</sup> d <sup>2</sup> , 4123(a) Concerned about environment, caring, socially alert, law abiding citizen ( or any1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         | (iii) $C_2H_5I + C_6H_5OH$ (No splitting of marks)                                       | 1         |
| b)2-3% solution of iodine in alcohol – water mixture / iodine dissolved in<br>alcohol , used as an antiseptic/ applied on wounds.<br>c) $y_2$ , $y_2$ 21(a)Carbohydrates that give large number of monosaccharide units on hydrolysis /<br>large number of monosaccharides units joined together by glycosidic linkage<br>Starch/glycogen/ cellulose (or any other)<br>(b)Proteins that lose their biological activity / proteins in which secondary and<br>tertiary structures are destroyed<br>Curdling of milk (or any other)<br>( c)Amino acids which cannot be synthesised in the body.<br>Valine / Leucine (or any other) $y_2$<br>$y_4$ 21(a)Saccharic acid / COOH-(CHOH)_4-COOH<br>(b)Due to the presence of carboxyl and amino group in the same molecule / due to<br>formation of zwitter ion or dipolar ion.<br>( c)a- helix has intramolecular hydrogen bonding / $\alpha$ - helix results due to regular coiling of polypeptide chains<br>while in $\beta$ pleated all polypeptide chains are stretched and arranged side by side.122(a) Fe4[Fe (CN)_6]_3<br>( b) Ionisation isomerism<br>( c) sp <sup>3</sup> d <sup>2</sup> , 4123(a) Concerned about environment, caring, socially alert, law abiding citizen ( or any1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 20      | a) To impart antisentic properties                                                       | 1         |
| alcohol , used as an antiseptic/ applied on wounds.1c) Sodium benzoate / Aspartame121(a)Carbohydrates that give large number of monosaccharide units on hydrolysis /<br>large number of monosaccharides units joined together by glycosidic linkage<br>Starch/ glycogen/ cellulose (or any other)<br>(b)Proteins that lose their biological activity / proteins in which secondary and<br>tertiary structures are destroyed<br>Curdling of milk (or any other)<br>( c)Amino acids which cannot be synthesised in the body.<br>Valine / Leucine (or any other)½21(a)Saccharic acid / COOH-(CHOH)4-COOH<br>(b)Due to the presence of carboxyl and amino group in the same molecule / due to<br>formation of zwitter ion or dipolar ion.<br>( c)\alpha - helix results due to regular coiling of polypeptide chains<br>while in $\beta$ pleated all polypeptide chains are stretched and arranged side by side.122(a) Fe4[Fe (CN)6]3<br>(b) lonisation isomerism<br>(c) sp <sup>3</sup> d <sup>2</sup> , 4123(a) Concerned about environment, caring, socially alert, law abiding citizen ( or any                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20.     | , , , , , , , , , , , , , , , , , , , ,                                                  |           |
| c)Sodium benzoate / Aspartame21(a)Carbohydrates that give large number of monosaccharide units on hydrolysis /<br>large number of monosaccharides units joined together by glycosidic linkage<br>Starch/ glycogen/ cellulose (or any other)<br>(b)Proteins that lose their biological activity / proteins in which secondary and<br>tertiary structures are destroyed<br>Curdling of milk (or any other)<br>( c)Amino acids which cannot be synthesised in the body.<br>Valine / Leucine (or any other)½0R½21(a)Saccharic acid / COOH-(CHOH) <sub>4</sub> -COOH<br>(b)Due to the presence of carboxyl and amino group in the same molecule / due to<br>formation of zwitter ion or dipolar ion.<br>( c)α- helix has intramolecular hydrogen bonding while β pleated has intermolecular<br>hydrogen bonding / α- helix results due to regular coiling of polypeptide chains<br>while in β pleated all polypeptide chains are stretched and arranged side by side.122(a) Fe4[Fe (CN) <sub>6</sub> ]3<br>(b) lonisation isomerism<br>(c) sp <sup>3</sup> d <sup>2</sup> , 4123(a) Concerned about environment, caring, socially alert, law abiding citizen ( or any                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |                                                                                          |           |
| large number of monosaccharides units joined together by glycosidic linkage<br>Starch/ glycogen/ cellulose (or any other)<br>(b)Proteins that lose their biological activity / proteins in which secondary and<br>tertiary structures are destroyed<br>Curdling of milk (or any other)<br>( c)Amino acids which cannot be synthesised in the body.<br>Valine / Leucine (or any other)½<br>½21(a)Saccharic acid / COOH-(CHOH)_4-COOH<br>(b)Due to the presence of carboxyl and amino group in the same molecule / due to<br>formation of zwitter ion or dipolar ion.<br>( c)α- helix has intramolecular hydrogen bonding while β pleated has intermolecular<br>hydrogen bonding / α- helix results due to regular coiling of polypeptide chains<br>while in β pleated all polypeptide chains are stretched and arranged side by side.122(a) Fe4[Fe (CN)_6]_3<br>( b) lonisation isomerism<br>( c) sp <sup>3</sup> d <sup>2</sup> , 4123(a) Concerned about environment, caring, socially alert, law abiding citizen ( or any1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         |                                                                                          | -         |
| Starch/glycogen/ cellulose (or any other)       ½         (b)Proteins that lose their biological activity / proteins in which secondary and tertiary structures are destroyed       ½         Curdling of milk (or any other)       ½         (c)Amino acids which cannot be synthesised in the body.       ½         Valine / Leucine (or any other)       ½         (c)Amino acids which cannot be synthesised in the body.       ½         Valine / Leucine (or any other)       ½         (a)Saccharic acid / COOH-(CHOH) <sub>4</sub> -COOH       1         (b)Due to the presence of carboxyl and amino group in the same molecule / due to formation of zwitter ion or dipolar ion.       1         (c)a- helix has intramolecular hydrogen bonding while β pleated has intermolecular hydrogen bonding / α- helix results due to regular coiling of polypeptide chains while in β pleated all polypeptide chains are stretched and arranged side by side.       1         22       (a) Fe4[Fe (CN) <sub>6</sub> ] <sub>3</sub> 1         (b) lonisation isomerism       1       1         (c) sp <sup>3</sup> d <sup>2</sup> , 4       ½, ½         23       (a) Concerned about environment, caring, socially alert, law abiding citizen ( or any                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 21      |                                                                                          | 1/2       |
| (b) Proteins that lose their biological activity / proteins in which secondary and<br>tertiary structures are destroyed<br>Curdling of milk (or any other)<br>(c) Amino acids which cannot be synthesised in the body.<br>Valine / Leucine (or any other) $\frac{1}{\sqrt{2}}$ (c) Amino acids which cannot be synthesised in the body.<br>Valine / Leucine (or any other) $\frac{1}{\sqrt{2}}$ (a) Saccharic acid / COOH-(CHOH)_4-COOH<br>(b) Due to the presence of carboxyl and amino group in the same molecule / due to<br>formation of zwitter ion or dipolar ion.<br>(c) $\alpha$ - helix has intramolecular hydrogen bonding while $\beta$ pleated has intermolecular<br>hydrogen bonding / $\alpha$ - helix results due to regular coiling of polypeptide chains<br>while in $\beta$ pleated all polypeptide chains are stretched and arranged side by side.122(a) Fe4[Fe (CN)_6]_3<br>(b) lonisation isomerism<br>(c) sp^3d^2, 4123(a) Concerned about environment, caring, socially alert, law abiding citizen ( or any1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |                                                                                          |           |
| tertiary structures are destroyed<br>Curdling of milk (or any other)<br>(c) Amino acids which cannot be synthesised in the body.<br>Valine / Leucine (or any other) $\gamma_2$<br>$\gamma_2$ 0R121(a) Saccharic acid / COOH-(CHOH)_4-COOH<br>(b) Due to the presence of carboxyl and amino group in the same molecule / due to<br>formation of zwitter ion or dipolar ion.<br>(c) $\alpha$ - helix has intramolecular hydrogen bonding while $\beta$ pleated has intermolecular<br>hydrogen bonding / $\alpha$ - helix results due to regular coiling of polypeptide chains<br>while in $\beta$ pleated all polypeptide chains are stretched and arranged side by side.122(a) Fe4[Fe (CN)_6]_3<br>(b) lonisation isomerism<br>(c) sp <sup>3</sup> d <sup>2</sup> , 4123(a) Concerned about environment, caring, socially alert, law abiding citizen ( or any1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         |                                                                                          |           |
| Curdling of milk (or any other)<br>(c)Amino acids which cannot be synthesised in the body.<br>Valine / Leucine (or any other) $\frac{72}{12}$<br>$\frac{12}{2}$ 0R0R21(a)Saccharic acid / COOH-(CHOH)_4-COOH<br>(b)Due to the presence of carboxyl and amino group in the same molecule / due to<br>formation of zwitter ion or dipolar ion.<br>(c) $\alpha$ - helix has intramolecular hydrogen bonding while $\beta$ pleated has intermolecular<br>hydrogen bonding / $\alpha$ - helix results due to regular coiling of polypeptide chains<br>while in $\beta$ pleated all polypeptide chains are stretched and arranged side by side.122(a) Fe4[Fe (CN)_6]_3<br>(c) sp^3d^2, 4123(a) Concerned about environment, caring, socially alert, law abiding citizen ( or any                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |                                                                                          |           |
| (c) Amino acids which cannot be synthesised in the body.<br>Valine / Leucine (or any other)½<br>½OR11(a)Saccharic acid / COOH-(CHOH)_4-COOH<br>(b)Due to the presence of carboxyl and amino group in the same molecule / due to<br>formation of zwitter ion or dipolar ion.<br>(c)α- helix has intramolecular hydrogen bonding while β pleated has intermolecular<br>hydrogen bonding / α- helix results due to regular coiling of polypeptide chains<br>while in β pleated all polypeptide chains are stretched and arranged side by side.122(a) Fe4[Fe (CN) <sub>6</sub> ]3<br>(b) lonisation isomerism<br>(c) sp <sup>3</sup> d <sup>2</sup> , 4123(a) Concerned about environment, caring, socially alert, law abiding citizen ( or any                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |                                                                                          |           |
| OR       1         21       (a)Saccharic acid / COOH-(CHOH) <sub>4</sub> -COOH       1         (b)Due to the presence of carboxyl and amino group in the same molecule / due to formation of zwitter ion or dipolar ion.       1         (c)\alpha-helix has intramolecular hydrogen bonding while \beta pleated has intermolecular hydrogen bonding / \alpha-helix results due to regular coiling of polypeptide chains while in \beta pleated all polypeptide chains are stretched and arranged side by side.       1         22       (a) Fe4[Fe (CN) <sub>6</sub> ] <sub>3</sub> 1         (b) lonisation isomerism       1         (c) sp <sup>3</sup> d <sup>2</sup> , 4       1         23       (a) Concerned about environment, caring, socially alert, law abiding citizen ( or any                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         | (c)Amino acids which cannot be synthesised in the body.                                  |           |
| <ul> <li>21 (a)Saccharic acid / COOH-(CHOH)<sub>4</sub>-COOH<br/>(b)Due to the presence of carboxyl and amino group in the same molecule / due to<br/>formation of zwitter ion or dipolar ion.<br/>( c)α- helix has intramolecular hydrogen bonding while β pleated has intermolecular<br/>hydrogen bonding / α- helix results due to regular coiling of polypeptide chains<br/>while in β pleated all polypeptide chains are stretched and arranged side by side.</li> <li>22 (a) Fe<sub>4</sub>[Fe (CN)<sub>6</sub>]<sub>3</sub><br/>(b) lonisation isomerism<br/>(c) sp<sup>3</sup>d<sup>2</sup>, 4</li> <li>23 (a) Concerned about environment, caring, socially alert, law abiding citizen ( or any</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |                                                                                          | 1/2       |
| <ul> <li>(b) Due to the presence of carboxyl and amino group in the same molecule / due to formation of zwitter ion or dipolar ion.</li> <li>(c) α- helix has intramolecular hydrogen bonding while β pleated has intermolecular hydrogen bonding / α- helix results due to regular coiling of polypeptide chains while in β pleated all polypeptide chains are stretched and arranged side by side.</li> <li>(a) Fe<sub>4</sub>[Fe (CN)<sub>6</sub>]<sub>3</sub></li> <li>(b) lonisation isomerism</li> <li>(c) sp<sup>3</sup>d<sup>2</sup>, 4</li> <li>(a) Concerned about environment, caring, socially alert, law abiding citizen ( or any</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |                                                                                          |           |
| <ul> <li>formation of zwitter ion or dipolar ion.</li> <li>(c)α- helix has intramolecular hydrogen bonding while β pleated has intermolecular hydrogen bonding / α- helix results due to regular coiling of polypeptide chains while in β pleated all polypeptide chains are stretched and arranged side by side.</li> <li>(a) Fe<sub>4</sub>[Fe (CN)<sub>6</sub>]<sub>3</sub></li> <li>(b) lonisation isomerism</li> <li>(c) sp<sup>3</sup>d<sup>2</sup>, 4</li> <li>(a) Concerned about environment, caring, socially alert, law abiding citizen ( or any</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 21      |                                                                                          |           |
| ( c)α- helix has intramolecular hydrogen bonding while β pleated has intermolecular<br>hydrogen bonding / α- helix results due to regular coiling of polypeptide chains<br>while in β pleated all polypeptide chains are stretched and arranged side by side.122(a) Fe4[Fe (CN)6]3<br>(b) lonisation isomerism<br>(c) sp <sup>3</sup> d <sup>2</sup> , 4123(a) Concerned about environment, caring, socially alert, law abiding citizen ( or any                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |                                                                                          | 1         |
| hydrogen bonding / α- helix results due to regular coiling of polypeptide chains122(a) Fe4[Fe (CN)6]31(b) Ionisation isomerism1(c) sp3d², 41/2, ½23(a) Concerned about environment, caring, socially alert, law abiding citizen ( or any                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         |                                                                                          |           |
| while in β pleated all polypeptide chains are stretched and arranged side by side.         22       (a) Fe <sub>4</sub> [Fe (CN) <sub>6</sub> ] <sub>3</sub> 1         (b) Ionisation isomerism       1         (c) sp <sup>3</sup> d <sup>2</sup> , 4       1/2, ½         23       (a) Concerned about environment, caring, socially alert, law abiding citizen ( or any                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |                                                                                          | 1         |
| (b) Ionisation isomerism1<br>$\gamma_2, \gamma_2$ 23(a) Concerned about environment, caring, socially alert, law abiding citizen ( or any                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         | while in $\beta$ pleated all polypeptide chains are stretched and arranged side by side. |           |
| (c) $sp^3d^2$ , 4 $y_2$ 23(a) Concerned about environment, caring, socially alert, law abiding citizen ( or any                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 22      |                                                                                          | 1         |
| 23 (a) Concerned about environment, caring, socially alert, law abiding citizen ( or any                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         | (b) Ionisation isomerism                                                                 | 1         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |                                                                                          | 1/2, 1/2  |
| other 2 values)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 23      |                                                                                          |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         | other 2 values)                                                                          | 1/2 , 1/2 |

|    | <ul><li>(b) Low density polythene is highly branched while high density polythene is linear.</li><li>(c) As it is non-biodegradable .</li></ul>                                                                                                                           | 1                               |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
|    | (d) Which can be degraded by microorganisms, eg <i>PHBV(or any other correct example)</i>                                                                                                                                                                                 | 1/2 , 1/2                       |
| 24 | a) (i) In +3 oxidation state of phosphorus tends to disproportionate to higher and lower oxidation states / Oxidation state of P in $H_3PO_3$ is +3 so it undergoes disproportionation but in $H_3PO_4$ it is +5 which is the highest oxidation state, so it cannot.      | 1                               |
|    | (ii) F cannot show positive oxidation state as it has highest electronegativity/<br>Because Fluorine cannot expand its covalency / As Fluorine is a small sized<br>atom, it cannot pack three large sized Cl atoms around it.                                             | 1                               |
|    | (iii) Oxygen has multiple bonding whereas sulphur shows catenation / Due to $p\pi$ - $p\pi$ bonding in oxygen whereas sulphur does not / Oxygen is diatomic therefore held by weak intermolecular force while sulphur is polyatomic held by strong intermolecular forces. |                                 |
|    | b) (i) (ii)                                                                                                                                                                                                                                                               |                                 |
|    |                                                                                                                                                                                                                                                                           | 1, 1                            |
|    | OR                                                                                                                                                                                                                                                                        |                                 |
| 24 | a) (i) $A = NO_2$ , $B = N_2O_4$<br>(ii)                                                                                                                                                                                                                                  | 1/2, 1/2                        |
|    |                                                                                                                                                                                                                                                                           | Y <sub>2</sub> , Y <sub>2</sub> |
|    | , (iii) Because NO <sub>2</sub> dimerises to N <sub>2</sub> O <sub>4</sub> / NO <sub>2</sub> is an odd electron species.                                                                                                                                                  | 1                               |
|    | b) $HI > HBr > HCl > HF$                                                                                                                                                                                                                                                  | 1                               |
|    | c) $XeF_4 + SbF_5 \rightarrow [XeF_3]^+ [SbF_6]^-$                                                                                                                                                                                                                        | 1                               |
| 25 | (a) Sn + 2 H <sup>+</sup> $\rightarrow$ Sn <sup>2+</sup> + H <sub>2</sub> (Equation must be balanced)                                                                                                                                                                     | 1                               |
|    | $E = E^{\circ} - \frac{0.059}{2} \log \frac{[Sn^{2+}]}{[H^{+}]^{2}}$                                                                                                                                                                                                      | 1/2                             |
|    | $= [0 - (-0.14)] - 0.0295 \log \frac{(0.004)}{(0.02)^2}$                                                                                                                                                                                                                  | 1/2                             |
|    | $= 0.14 - 0.0295 \log 10 = 0.11 \text{ V} / 0.1105 \text{ V}$                                                                                                                                                                                                             | 1                               |
|    | (b) (i) Due to overpotential/ Overvoltage of O <sub>2</sub>                                                                                                                                                                                                               | 1                               |
|    | (ii) The number of ions per unit volume decreases.                                                                                                                                                                                                                        | 1                               |
| 25 | a) ΔG° = - nFE°<br>-43600 = - 2 × 96500 ×E°                                                                                                                                                                                                                               | 1/2                             |
|    | $E^{\circ} = 0.226 V$<br>$E = E^{\circ} - 0.059/2 \log ([H^{+}]^{2} [C]^{2} / [H_{0}])$                                                                                                                                                                                   | 1/2                             |
|    | $E = E^{\circ} - 0.059/2 \log \left( \left[ H^{+} \right]^{2} \left[ Cl^{-} \right]^{2} / \left[ H_{2} \right] \right)$<br>= 0.226 - 0.059/2 log[ (0.1) <sup>2</sup> ×(0.1) <sup>2</sup> ] / 1<br>= 0.226 - 0.059 / 2 log 10 <sup>-4</sup>                                | 1/2<br>1/2                      |
|    |                                                                                                                                                                                                                                                                           | /2                              |

| -  |                                                                                                                                                              |          |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
|    | = 0.226 + 0.118 = 0.344 V (Deduct half mark if unit is wrong or not written)                                                                                 |          |
|    | b) Calle that convert the energy of combustion of fuels (like budroson, methods)                                                                             | 1        |
|    | b) Cells that convert the energy of combustion of fuels (like hydrogen, methane, methanol, etc.) directly into electrical energy are called fuel cells.      |          |
|    | Advantages : High efficiency, non polluting (or any other suitable advantage)                                                                                | 1/2 ,1/2 |
| 26 | (a)(i) Ar/ R-CONH <sub>2</sub> + Br <sub>2</sub> + 4 NaOH $\rightarrow$ Ar/ R-NH <sub>2</sub> + 2NaBr + Na <sub>2</sub> CO <sub>3</sub> + 2 H <sub>2</sub> O | 1        |
|    | (ii)                                                                                                                                                         |          |
|    | $C_6H_5NH_2 + NaNO_2 + 2HCl \xrightarrow{273-278K} C_6H_5 N_2 Cl + NaCl + 2H_2O$                                                                             | 1        |
|    | $C_6\Pi_5\Pi_2 + \Pi a V C_2 + 2\Pi c I$ (or any other correct equation)                                                                                     |          |
|    | (iii)                                                                                                                                                        |          |
|    |                                                                                                                                                              |          |
|    | 9 9 9                                                                                                                                                        |          |
|    |                                                                                                                                                              |          |
|    |                                                                                                                                                              |          |
|    | 0 0                                                                                                                                                          |          |
|    |                                                                                                                                                              |          |
|    | 0                                                                                                                                                            |          |
|    |                                                                                                                                                              |          |
|    | $N-R \longrightarrow C \longrightarrow NA^* + R-NH_a$                                                                                                        | 1        |
|    |                                                                                                                                                              | -        |
|    | (b)(i)Because of the combined factors of inductive effect and solvation or                                                                                   |          |
|    | hydration effect                                                                                                                                             | 1        |
|    |                                                                                                                                                              |          |
|    | (ii)Due to resonance stabilisation or structural representation / resonating                                                                                 |          |
|    | structures.                                                                                                                                                  | 1        |
|    | OR                                                                                                                                                           |          |
| 26 | (a) (i) C <sub>6</sub> H₅NHCOCH <sub>3</sub>                                                                                                                 | 1        |
|    | (ii) $C_6H_5SO_2N(CH_3)_2$                                                                                                                                   | 1        |
|    | (iii) C <sub>6</sub> H <sub>6</sub>                                                                                                                          | 1        |
|    | (b) Add chloroform in the presence of KOH and heat , Aniline gives a offensive smell                                                                         | 1        |
|    | while N,N dimethylaniline does not. (or any other correct test)                                                                                              |          |
|    | $(c)C_2H_5NH_2 < C_6H_5NHCH_3 < C_6H_5NH_2$                                                                                                                  |          |
|    |                                                                                                                                                              | 1        |