BSEH Practice Paper (March 2024) (2023-24)

Marking Scheme

MATHEMATICS

SET-D CODE: 835

⇒ Important Instructions: • All answers provided in the Marking scheme are SUGGESTIVE

	SECTION – A (1Mark × 20Q)	
Q. No.	EXPECTED ANSWERS	Marks
Question 1.	Let R be the relation in the set R given by $R = \{(a, b) : a \le b^2 \}$. Choose the correct answer.	
Solution:	(D) (9, 2) ∈ R	1
Question 2	$\cos^{-1}\left(\cos\frac{13\pi}{6}\right)$ is equal to	
Solution:	$\cos^{-1}\left(\cos\frac{13\pi}{6}\right)$ is equal to $(\mathbf{D}) \frac{\pi}{6}$	1
Question 3	If $A = \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix}$, then A'A is: (A) I	1
Question 4.	If A is an invertible matrix of order 2, then det (A ⁻¹) is equal to	
Solution:	(B) $\frac{1}{det(A)}$	1
Question 5.	If the vertices of a triangle are (3, 8), (-4, 2) and (5, 1), then by using determinants its area is	
Solution:	$(\mathbf{B}) \ \frac{61}{2}$	1
Question 6.	If $y = x^2 log x$, then $\frac{d^2 y}{d x^2}$ is equal to:	
Solution:	$(A) 3 + 2\log x$	1
Question 7.	The antiderivative of $\frac{x^2 + 3x + 4}{\sqrt{x}}$ equals:	
Solution:	(B) $\frac{2}{5}x^{\frac{5}{2}} + 2x^{\frac{3}{2}} + 8x^{\frac{1}{2}} + C$	1

$\int e^{x} \left(\tan^{-1} x + \frac{1}{1 + v^{2}} \right) dx \text{ equals:}$	
$(A) e^{x} \tan^{-1} x + C$	1
The value of $\int_{-\pi/2}^{\pi/2} \sin^3 x dx$ is	
(C) 0	1
The order of the differential equation $\frac{d^3y}{dx^3} + 2\frac{d^2y}{dx^2} + \frac{dy}{dx} = 0$ is:	
(C) 3	1
The number of arbitrary constants in the particular solution of a differential equation of third order are:	
Since order of differential equation is 3 therefore number of arbitrary constants in the particular solution is 3.	1
The function $f(x) = \begin{cases} \frac{\sin 3x}{x}, & \text{if } x \neq 0 \\ k, & \text{if } x = 0 \end{cases}$ is continuous at $x = 0$, then find the value of k.	
$=3\lim_{X\to 0} \frac{\sin 3x}{3x}$ $=3(1)=3$ Since $f(x)$ is continuous at $x=0$ $\therefore \lim_{X\to 0} f(x) = f(0)$ $\mathbf{k} = 3$	1
·	
	1
$P(A/B) = \frac{P(A \cap B)}{P(B)}$	1
	The value of $\int_{-\pi/2}^{\pi/2} \sin^3 x dx$ is (C) 0 The order of the differential equation $\frac{d^3y}{dx^3} + 2\frac{d^2y}{dx^2} + \frac{dy}{dx} = 0$ is: (C) 3 The number of arbitrary constants in the particular solution of a differential equation of third order are: Since order of differential equation is 3 therefore number of arbitrary constants in the particular solution is 3. The function $f(x) = \begin{cases} \frac{\sin 3x}{x} &, & \text{if } x \neq 0 \\ k &, & \text{if } x = 0 \end{cases}$ is continuous at $x = 0$, then find the value of k . $\lim_{X \to 0} f(x) = \lim_{X \to 0} \frac{\sin 3x}{x}$ $= 3\lim_{X \to 0} \frac{\sin 3x}{3x}$ $= 3(1) = 3$ Since $f(x)$ is continuous at $x = 0$ $\therefore \lim_{X \to 0} f(x) = f(0)$ $k = 3$ Find the direction cosines of y-axis. $< 0, 1, 0 >$ Compute $P(A \cap B)$, if $P(B) = 0.8$, $P(A B) = 0.4$. $P(A \cap B) = ?$, $P(A B) = 0.4$, $P(B) = 0.8$

	$P(A \cap B) = (0.4).(0.8) = 0.32$	
Question15.	Two vectors having same magnitude are collinear. (True / False)	
Solution:	False	1
Question16.	Let A and B are independent events. Then $P(A \text{ and } \mathbf{B}) = P(A) + P(B)$ (True / False)	
Solution:	False	1
Question17.	Let A and B be two events. If $P(A B) = P(A)$, then A is of B.	
Solution:	Independent	1
Question18.	The projection vector of $\vec{a} = \hat{\imath} + 3\hat{\jmath} + 7\hat{k}$ on $\vec{b} = 7\hat{\imath} - \hat{\jmath} + 8\hat{k}$ is	
Solution:	Projection of vector of \vec{a} on $\vec{b} = \frac{\vec{a}.\vec{b}}{ \vec{b} } = \frac{7-3+56}{\sqrt{49+1+64}} = \frac{60}{\sqrt{114}}$	
Question19.	Assertion (A): Let L be the collection of all lines in a plane and R_1 be the relation on L as $R_1 = \{(L_1, L_2): L_1 \perp L_2\}$ is a symmetric relation.	
	Reason (R): A relation R is said to be symmetric if $(a, b) \in R \implies (b, a) \in R$.	
Solution:	(A)	1
Question20.	Assertion (A): Vector form of the equation of a line $\frac{(x-2)}{3} = \frac{(y-1)}{2} = \frac{(3-z)}{-1} \text{ is } \vec{r} = (2\hat{\imath} + \hat{\jmath} + 3\hat{k}) + \lambda(3\hat{\imath} + 2\hat{\jmath} + \hat{k})$	
	Reason (R): Cartesian equation of a line passing through the point (2, 1,3) and parallel to the line $\frac{(x-3)}{1} = \frac{(y-2)}{2} = \frac{(z-4)}{-2}$ is $2x-4=y-1=3-z$	
Solution:	(B)	1
	SECTION – B (2Marks × 5Q)	
Question21.	Check the injectivity and surjectivity of the function f: $R-\{0\} \rightarrow R-\{0\}$ given by $f(x) = \frac{1}{x}$	
Solution:	Here given function is $f(x) = \frac{1}{x}$	
	Let a, $b \in R - \{0\}$ and $f(a) = f(b)$	
	$\Rightarrow \frac{1}{a} = \frac{1}{b}$	

	\Rightarrow a = b	
	∴ f is one - one.	1
	Let $b \in R - \{0\}$, then $b \neq 0$	
	And $f(\frac{1}{b}) = \frac{1}{\frac{1}{b}} = b$	
	Thus, f is both one - one and onto	1
OR Question21.	Find the value of $tan^{-1} \left[2cos \left(2sin^{-1} \frac{1}{2} \right) \right]$	
Solution:	$\tan^{-1}\left[2\cos\left(2.\frac{\pi}{6}\right)\right] = \tan^{-1}\left[2\cos\frac{\pi}{3}\right]$	1
	$= \tan^{-1}\left[2.\frac{1}{2}\right]$	
	= tan ⁻¹ 1	
	$=\frac{\pi}{4}$	1
Question22.	Construct a 3 × 2 matrix whose elements are given by $a_{ij} = \frac{1}{2} (i + 2j)^2$.	
Solution:	Since it is 3 x 2 Matrix	
	It has 3 rows and 2 columns	
	Let the matrix be A	
	Where $A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32} \end{bmatrix}$	1/2
	Now it is given that $a_{ij} = \frac{1}{2} (i + 2j)^2$	
	Hence the required matrix is	
	$a_{11} = \frac{1}{2} (1+2)^2 = 9/2$ $a_{12} = \frac{1}{2} (1+2(2))^2 = 25/2$	

	$a_{21} = \frac{1}{2} (2 + 2(1))^2 = 8$ $a_{22} = \frac{1}{2} (2 + 2(2))^2 = 18$	
	$a_{31} = \frac{1}{2} (3 + 2(1))^2 = 25/2$ $a_{32} = \frac{1}{2} (3 + 2(2))^2 = 49/2$	
	$\Rightarrow A = \begin{bmatrix} 9/2 & 25/2 \\ 8 & 18 \\ 25/2 & 49/2 \end{bmatrix}$	$1\frac{1}{2}$
Question23.	Find the value of k so that the function is continuous is at $x = 3$. $f(x) = \begin{cases} \frac{x^2 - 9}{x - 3}, & x = 3 \\ k & x \neq 3 \end{cases}$ Given function is $f(x) = \begin{cases} \frac{x^2 - 9}{x - 3}, & x \neq 3 \\ k & x = 3 \end{cases}$	
Solution:	Given function is $f(x) = \begin{cases} \frac{x^2 - 9}{x - 3}, & x \neq 3 \\ k, & x = 3 \end{cases}$	
	Now	
	$\lim_{x\to 3} f(x) => \lim_{x\to 3} \frac{x^2 - 9}{x - 3}$	
	$\lim_{x \to 3} \frac{(x-3)(x+3)}{x-3} = \lim_{x \to 3} (x+3) = 6$	1
	Since function is continuous, therefore	
	$\lim_{x\to 3} f(x) = f(3)$	
	k = 6	1
Question24.	Verify that the function $y = e^{-3x}$ is a solution of the differential equation $\frac{d^2y}{dx^2} + \frac{dy}{dx} - 6y = 0$	
Solution:		
	The given function is $y = e^{-3x}$	1
	$\frac{\mathrm{dy}}{\mathrm{dx}} = -3\mathrm{e}^{-3\mathrm{x}}$	$\frac{1}{2}$
	$\frac{dy}{dx} = -3e^{-3x}$ $\frac{d^2y}{dx^2} = 9e^{-3x}$	$\frac{1}{2}$
	L.H.S. = $\frac{d^2y}{dx^2} + \frac{dy}{dx} - 6y$ = $9e^{-3x} + (-3e^{-3x}) - 6e^{-3x}$	1

	$=9e^{-3x}-9e^{-3x}=0$	
OR Question24.	Find the general solution of the differential equation $\frac{dy}{dx} + \sqrt{\frac{1-y^2}{1-x^2}} = 0$	
Solution:	The given equation is $\frac{dy}{dx} + \sqrt{\frac{1-y^2}{1-x^2}} = 0$	
	$\Rightarrow \frac{dy}{dx} = -\frac{\sqrt{1-y^2}}{\sqrt{1-x^2}}$ $\Rightarrow \frac{dy}{\sqrt{1-y^2}} = -\frac{dx}{\sqrt{1-x^2}}$	$\frac{1}{2}$
	Integrating both sides, we have	
	$\sin^{-1} y = -\sin^{-1} x + C$	
	$\sin^{-1} y + \sin^{-1} x = C$	$1\frac{1}{2}$
	which is the required solution.	
Question25.	Two balls are drawn at random with replacement from a box containing 10 black and 8 red balls. Find the probability that first ball is black and second is red.	
Solution:	Total number of balls = 10 black balls + 8 red balls = 18 balls	
	Probability of getting a black ball in the first draw = $\frac{10}{18} = \frac{5}{9}$	
	As the ball is replaced after the first throw,	
	Probability of getting a red ball in the second draw = $\frac{8}{18} = \frac{4}{9}$	1
	Since the two balls are drawn with replacement, the two draws are independent.	
	P(both balls are red) = P(first ball is red) \times P(second ball is red)	
	Now, the probability of getting both balls red = $\frac{5}{9} \times \frac{4}{9} = \frac{20}{81}$	1
	SECTION – C (3Marks × 8Q)	
Question26.	Show that the relation R defined in the set A of all polygons as $R = \{(P_1, P_2): P_1, \text{ and } P_2 \text{ have same number of sides}\}$, is an equivalence relation.	

Solution:	Set A is the set of all the polygons.	
	$R = \{(P_1, P_2): P_1, \text{ and } P_2 \text{ have same number of sides } \}$	
	Now R is reflexive since $(P, P) \in R$ as P and P has the same number of sides.	$\frac{1}{2}$
	Let $(P_1, P_2) \in \mathbb{R} \implies P_1$ and P_2 have same number of sides	_
	\Rightarrow P ₂ and P ₁ have same number of sides	
	\Rightarrow (P_2 , P_1) \in \mathbb{R}	
	Therefore R is symmetric	1
	Now let $(P_1, P_2) \in \mathbb{R}$ and $(P_2, P_3) \in \mathbb{R}$	1
	\Rightarrow P ₁ and P ₂ have same number of sides	
	and P ₂ and P ₃ have same number of sides	
	\Rightarrow P ₁ and P ₃ have same number of sides	
	\Rightarrow $(P_1, P_3) \in \mathbb{R}$	1
	Therefore R is transitive .	$\frac{1}{2}$
	Hence R is an equivalence relation .	
OR Question26.	Solve for x: $\tan^{-1}\left(\frac{1-x}{1+x}\right) = \frac{1}{2}\tan^{-1}x$, $x > 0$	
Solution:	We have $\tan^{-1}\left(\frac{1-x}{1+x}\right) = \frac{1}{2}\tan^{-1}x$ (1)	
	We know $tan^{-1}\left(\frac{A-B}{1+AB}\right) = tan^{-1}A - tan^{-1}B$	$\frac{1}{2}$
	Therefore, From equation (1)	
	$\Rightarrow \tan^{-1} 1 - \tan^{-1} x = \frac{1}{2} \tan^{-1} x$	1
	$\Rightarrow 2 \tan^{-1} 1 - 2 \tan^{-1} x = \tan^{-1} x$	
	$\Rightarrow 2(\frac{\pi}{4}) = 3\tan^{-1} x$	1
	$\Rightarrow \frac{\pi}{2} = 3\tan^{-1} x$	$1\frac{1}{2}$
	$\Rightarrow \tan^{-1} x = \frac{\pi}{6}$	

	π 1	1
	$\Rightarrow x = \tan \frac{\pi}{6} \implies x = \frac{1}{\sqrt{3}}$	
Question27.	Find X and Y, if $2X + Y = \begin{bmatrix} 4 & 4 & 7 \\ 7 & 3 & 4 \end{bmatrix}$ and $X - 2Y = \begin{bmatrix} -3 & 2 & 1 \\ 1 & -1 & 2 \end{bmatrix}$	
Solution:	Given equations are	
	$2X + Y = \begin{bmatrix} 4 & 4 & 7 \\ 7 & 3 & 4 \end{bmatrix} \qquad(1)$	
	$X - 2Y = \begin{bmatrix} -3 & 2 & 1\\ 1 & -1 & 2 \end{bmatrix} \qquad \dots (2)$	
	Multiplying equation (1) by 2 and then adding to equation (2), we have	
	$2(2X + Y) + (X - 2Y) = 2\begin{bmatrix} 4 & 4 & 7 \\ 7 & 3 & 4 \end{bmatrix} + \begin{bmatrix} -3 & 2 & 1 \\ 1 & -1 & 2 \end{bmatrix}$	$\frac{1}{2}$
	$5X = \begin{bmatrix} 5 & 10 & 15 \\ 15 & 5 & 10 \end{bmatrix}$ $X = \frac{1}{5} \begin{bmatrix} 5 & 10 & 15 \\ 15 & 5 & 10 \end{bmatrix}$	
	$X = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{bmatrix}$	1
	Using the value of matrix X in (1) equation, we have	
	$2\begin{bmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{bmatrix} + Y = \begin{bmatrix} 4 & 4 & 7 \\ 7 & 3 & 4 \end{bmatrix}$	$\frac{1}{2}$
	$\Rightarrow \begin{bmatrix} 2 & 4 & 6 \\ 6 & 2 & 4 \end{bmatrix} + Y = \begin{bmatrix} 4 & 4 & 7 \\ 7 & 3 & 4 \end{bmatrix}$	
	$\Rightarrow \mathbf{Y} = \begin{bmatrix} 4 & 4 & 7 \\ 7 & 3 & 4 \end{bmatrix} - \begin{bmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{bmatrix}$	
	$\Rightarrow Y = \begin{bmatrix} 3 & 2 & 4 \\ 4 & 2 & 2 \end{bmatrix}$	1
Question28.	Find $\frac{dy}{dx}$ of the function $xy = e^{(x-y)}$.	
Solution:	Given: $xy = e^{(x-y)}$	
	Taking log on both sides, we have	
	$\Rightarrow \log x + \log y = (x - y)\log e$	1
		i

	$\Rightarrow \log x + \log y = x - y \qquad [\because \log e = 1]$	
	Diff. w.r.t. 'x'	
	$\Rightarrow \frac{1}{x} + \frac{1}{y} \frac{dy}{dx} = 1 - \frac{dy}{dx}$	1
	J	
	$\Rightarrow (\frac{1}{y} + 1) \frac{dy}{dx} = 1 - \frac{1}{x}$	
	$\Rightarrow (\frac{1+y}{y})\frac{dy}{dx} = \frac{x-1}{x}$	
		1
	$\Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{y(x-1)}{x(1+y)}$	
Question29.	Find the intervals in which the function f is given by $f(x) = 4x^3 - 6x^2 - 72x + 30$ is strictly increasing or strictly decreasing.	
Solution:	Given function: $f(x) = 4x^3 - 6x^2 - 72x + 30$	
	Diff. w.r.t. 'x'	
	$f'(x) = 12x^2 - 12x - 72 = 12(x^2 - x - 6)$	
	f'(x) = 12(x-3)(x+2) ,(1)	
	Now for increasing or decreasing, $f'(x) = 0$	
	$\begin{vmatrix} 12(x-3)(x+2) = 0 \\ x-3 = 0 & \text{or} & x+2 = 0 \end{vmatrix}$	
	x - 3 = 0 or $x + 2 = 0$	
	x = 3 or $x = -2$	1
	Therefore, we have sub-intervals are $(-\infty, -2)$, $(-2, 3)$ and $(3, \infty)$	
	For interval $(-\infty, -2)$, picking $x = -3$, from equation (1),	
	f'(x) = (+ve)(-ve)(-ve) = (+ve) > 0	$\frac{1}{2}$
	Therefore, f is strictly increasing in $(-\infty,-2)$	2
	For interval $(-2, 3)$, picking $x = 0$, from equation (1) ,	
	f'(x) = (+ve)(-ve)(+ve) = (-ve) < 0	1
		$\frac{1}{2}$

	Therefore, f is strictly decreasing in (-2, 3).	
	Therefore, I is strictly decreasing in (2, 3).	
	For interval $(3, \infty)$, picking $x = 4$, from equation (1), $f'(x) = (+ve)(+ve)(+ve) = (+ve) > 0$	$\frac{1}{2}$
	Therefore, is strictly increasing in $(3, \infty)$.	
	So, f is strictly increasing in $(-\infty, -2)$ and $(3, \infty)$.	
	f is strictly decreasing in (-2, 3).	$\frac{1}{2}$
Question 30	Integrate: $\int x \tan^{-1} x dx$	
Solution:	- C , -1 ,	
	$I = \int x \tan^{-1} x dx$	
	Using $\int U.V dx = U \int V dx - \int (\frac{dU}{dx}) \int V dx$ dx	$\frac{1}{2}$
	$\int x \tan^{-1} x dx = \tan^{-1} x \int x dx - \int (\frac{d(\tan^{-1} x)}{dx}) \cdot \int x \cdot dx dx$	$\frac{1}{2}$
	$\Rightarrow \tan^{-1} x \left(\frac{x^2}{2}\right) - \int \frac{1}{1+x^2} \cdot \left(\frac{x^2}{2}\right) dx$	1
	$\Rightarrow \frac{x^2.\tan^{-1}x}{2} - \frac{1}{2} \int \frac{x^2}{1+x^2} dx$	
	$\Rightarrow \frac{x^2 \cdot \tan^{-1} x}{2} - \frac{1}{2} \int \frac{1 + x^2 - 1}{1 + x^2} dx$	
	$\Rightarrow \frac{x^2 \cdot \tan^{-1} x}{2} - \frac{1}{2} \int \left(\frac{1 + x^2}{1 + x^2} - \frac{1}{1 + x^2} \right) dx$	
	$\Rightarrow \frac{x^2 \cdot \tan^{-1} x}{2} - \frac{1}{2} \int (1 - \frac{1}{1 + x^2}) dx$	
	$\Rightarrow \frac{x^2.\tan^{-1}x}{2} - \frac{1}{2}(x - \tan^{-1}x) + C$	1
OR Question30.	Evaluate: $\int_0^{\frac{\pi}{2}} \frac{\cos^5 x}{\sin^5 x + \cos^5 x} dx$	
Solution:	$I = \int_0^{\frac{\pi}{2}} \frac{\cos^5 x}{\sin^5 x + \cos^5 x} dx \qquad(1)$	

Download from www.MsEducationTv.com

		T
	Using property of definite integral $\int_0^a f(x)dx = \int_0^a f(a-x)dx$	
	$I = \int_0^{\frac{\pi}{2}} \frac{\cos^5(\frac{\pi}{2} - x)}{\sin^5(\frac{\pi}{2} - x) + \cos^5(\frac{\pi}{2} - x)} dx$	
	$I = \int_0^{\frac{\pi}{2}} \frac{\sin^5 x}{\cos^5 x + \sin^5 x} dx \qquad(2)$	1
	Adding (1) and (2)	1
	$2I = \int_0^{\frac{\pi}{2}} \frac{\cos^5 x + \sin^5 x}{\sin^5 x + \cos^5 x} dx$	
	$2I = \int_0^{\frac{\pi}{2}} 1 dx$	1
	$2I = x _0^{\frac{\pi}{2}}$ $2I = \frac{\pi}{2}$ $I = \frac{\pi}{4}$	
	$2I = \frac{\pi}{2}$	
	$I = \frac{\pi}{4}$	
		1
Question31.	Find the area of a parallelogram whose adjacent sides are determined by the vectors $\vec{a} = \hat{\imath} - \hat{\jmath} + 3\hat{k}$ and $\vec{b} = 2\hat{\imath} - 7\hat{\jmath} + \hat{k}$.	
Solution:	$\vec{a} = \hat{\imath} - \hat{\jmath} + 3\hat{k}$ and $\vec{b} = 2\hat{\imath} - 7\hat{\jmath} + \hat{k}$	$\frac{1}{2}$
	Area of a parallelogram = $ \vec{a} \times \vec{b} $	
	$\begin{vmatrix} \vec{a} \times \vec{b} \end{vmatrix} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & -1 & 3 \\ 2 & -7 & 1 \end{vmatrix}$	$\frac{1}{2}$
	$= \left \hat{\imath}(-1 + 21) - \hat{\jmath}(1-6) + \hat{k}(-7+2) \right $	$1\frac{1}{2}$
	$= 20\hat{\imath} + 5\hat{\jmath} - 5\hat{k} $	2
	$=\sqrt{(20)^2+(5)^2+(-5)^2}$	
		1

	SECTION – C (5Marks × 4Q)	
Question32.	Solve the system of linear equations, using matrix method. $ x-y+2z=7 \\ 3x+4y-5z=-5 \\ 2x-y+3z=12 $	
Solution:	$A = \begin{bmatrix} 1 & -1 & 2 \\ 3 & 4 & -5 \\ 2 & -1 & 3 \end{bmatrix}$	
	A = 1(12 - 5) + 1(9 + 10) + 2(-3 - 8) = 1(7) + 1(19) + 2(-11)	
	= 7 + 19-22	
	$=4\neq0$;	1
	Inverse of matrix A, exists.	
	To find the inverse of matrix:	
	Cofactors of matrix:	
	$A_{11} = 7$, $A_{12} = -19$, $A_{13} = -11$	
	$A_{21} = 1, A_{22} = -1, A_{23} = -1$	
	$A_{31} = -3, A_{32} = 11, A_{33} = 7$	
	$\Rightarrow \text{ adj.A} = \begin{bmatrix} 7 & -19 & -11 \\ 1 & -1 & -1 \\ -3 & 11 & 7 \end{bmatrix}' = \begin{bmatrix} 7 & 1 & -3 \\ -19 & -1 & 11 \\ -11 & -1 & 7 \end{bmatrix}$	1
	So, $A^{-1} = \frac{adj.A}{ A }$	
	$A^{-1} = \frac{1}{4} \begin{bmatrix} 7 & 1 & -3 \\ -19 & -1 & 11 \\ -11 & -1 & 7 \end{bmatrix}$	1
	Now, matrix of equations can be written as: AX=B	

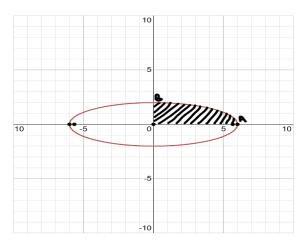
	$\begin{bmatrix} 1 & -1 & 2 \\ 3 & 4 & -5 \\ 2 & -1 & 3 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 7 \\ -5 \\ 12 \end{bmatrix}$	
	And, $X = A^{-1} B$	
	$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \frac{1}{4} \begin{bmatrix} 7 & 1 & -3 \\ -19 & -1 & 11 \\ -11 & -1 & 7 \end{bmatrix} \begin{bmatrix} 7 \\ -5 \\ 12 \end{bmatrix}$	1
	$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \frac{1}{4} \begin{bmatrix} 49 - 5 - 36 \\ -133 + 5 + 132 \\ -77 + 5 + 84 \end{bmatrix}$	
	$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \frac{1}{4} \begin{bmatrix} 8 \\ 4 \\ 12 \end{bmatrix} \Rightarrow \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix}$	1
	Therefore, $x = 2$, $y = 1$ and $z = 3$.	
Question33.	Find the area of the region bounded by the ellipse $\frac{x^2}{36} + \frac{y^2}{4} = 1$	
Solution:	Here $\frac{x^2}{36} + \frac{y^2}{4} = 1$ (1)	
	It is a horizontal ellipse having center at origin and is symmetrical about both axes (if we change y to -y or x to -x, equation remain same).	
	Standard equation of an ellipse is $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$	
	By comparing, $a = 6$ and $b = 2$	
	From equation (1)	$\frac{1}{2}$
	$\Rightarrow y^2 = \frac{4}{36} (36 - x^2) \Rightarrow y^2 = \frac{1}{9} (36 - x^2)$	
	$\Rightarrow y = \pm \frac{1}{3} \sqrt{36 - x^2} \qquad \dots (2)$	
	Points of Intersections of ellipse (1) with x-axis $(y = 0)$	
	Put $y = 0$ in equation (1), we have	

$$\Rightarrow x = \pm 6$$

Therefore, Intersections of ellipse(1) with x-axis are (6, 0) and (-6, 0).

Now again,

Points of Intersections of ellipse (1) with y-axis (x = 0)


Putting x = 0 in equation (1), $y^2/4 = 1$

$$\Rightarrow$$
 y² = 4

$$\Rightarrow$$
 y = ± 2

Therefore, Intersections of ellipse (1) with y-axis are (0, 2) and (0, -2)

for arc of ellipse in first quadrant.

Now, Area of region bounded by ellipse (1)

Total shaded area = $4 \times Area OAB$ of ellipse in first quadrant

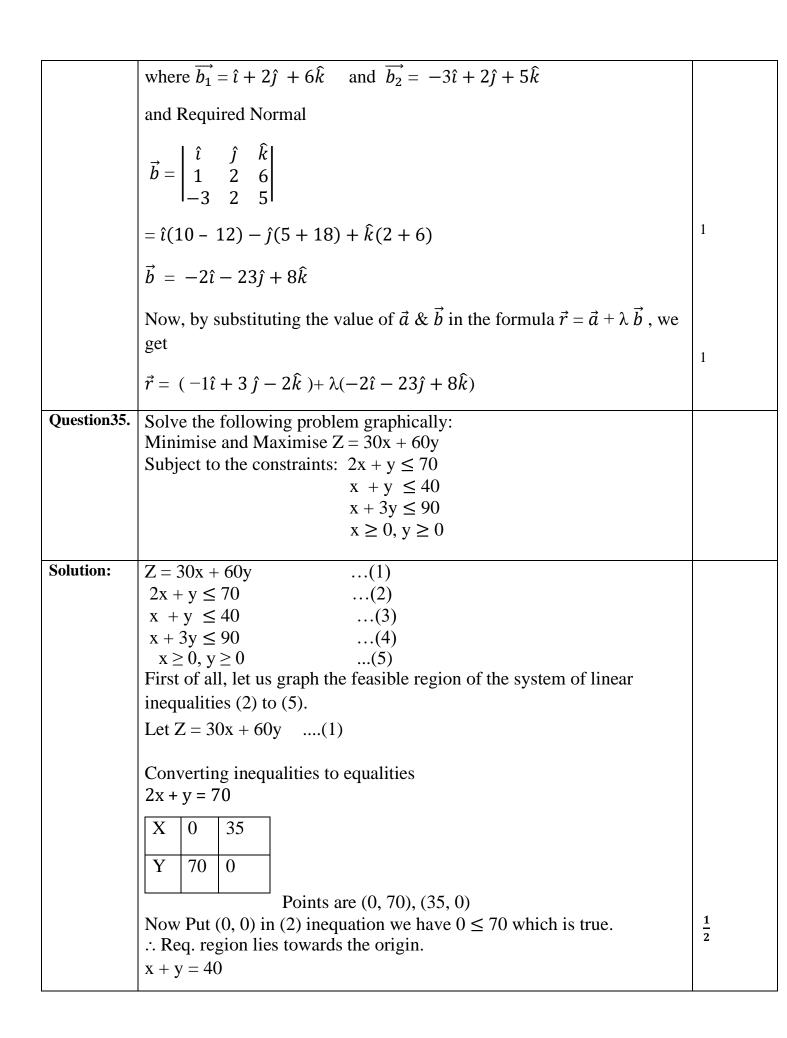
= $4|\int_0^6 y. dx|$ [: at end B of arc AB of ellipse: x = 0 and at end A of arc AB; x = 2]

$$=4|\int_0^6 \frac{1}{3} \sqrt{36-x^2} dx| = \frac{4}{3}|\int_0^6 \sqrt{6^2-x^2} dx|$$

$$= \frac{4}{3} \left| \frac{x}{2} \sqrt{6^2 - x^2} + \frac{6^2}{2} \sin^{-1} \frac{x}{6} \right|_0^6 \qquad \left[\because \int \sqrt{a^2 - x^2} \, dx \right] = \frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \sin^{-1} \frac{x}{a} \right]$$

 $\frac{1}{2}$

1


1

1

	$\frac{4}{3} \left[((6/2)\sqrt{36 - 36} + 18 \sin^{-1} 1) - (0 + 18 \sin^{-1} 0) \right] = \frac{4}{3} \left[18 \left(\frac{\pi}{2} \right) \right]$	
	$= 12(\pi) = 12\pi \text{ sq. units}$	1
OR Question33.	Find the area of the region bounded by the line $y = 3x + 2$, the x-axis and the ordinates $x = -1$ and $x = 1$.	
Solution:	The line $y = 3x + 2$ (1)	
	It is a straight line passing through the points $(-1, -1)$ and $(1, 5)$.	
	x = -1 and $x + 1$ are two straight lines parallel to y-axis.	
	Put $x = -1$ in equation(1) $y = -1$ Point is $(-1, -1)$	$\frac{1}{2}$
	Put $x = 1$ in equation (1) $y = 5$ Point is (1, 5)	2
	Making a rough hand sketch for the given lines. We have,	
	$X' \leftarrow C$ $X = -1$ $X = -1$ $X' \leftarrow C$ X	1
	Now, line (1) is meets x-axis at $x = \frac{-2}{3}$ (i.e. where y =0)	
	Therefore required region is lying below the x – axis for $x \in (-1, \frac{-2}{3})$	1
	And lying above the x-axis for $x \in (\frac{-2}{3}, 1)$.	
	Required area = Area of the egion ACBA + Area of the region ADEA	
	$\Rightarrow = \int_{-1}^{\frac{-2}{3}} (-y \text{ of line}) . dx + \int_{\frac{-2}{3}}^{1} (y \text{ of line}) . dx$	1
	$\Rightarrow = -\int_{-1}^{\frac{-2}{3}} 3x + 2.dx + \int_{\frac{-2}{3}}^{1} 3x + 2.dx$	

	$\Rightarrow = -\left \frac{3x^2}{2} + 2x\right _{-1}^{\frac{-2}{3}} + \left \frac{3x^2}{2} + 2x\right _{\frac{-2}{3}}^{1}$	
	$\Rightarrow = -\left[\left\{\frac{3}{2}\left(\frac{-2}{3}\right)^2 + 2\left(\frac{-2}{3}\right)\right\} - \left\{\frac{3}{2}(-1)^2 + 2(-1)\right\}\right] + \left[\left\{\frac{3}{2}(1)^2 + 2(-1)\right\}\right] + \left[\left(\frac{3}{2}(1)^2 + 2(-1)\right)\right] + \left(\frac{3}{2}(1)^2 + 2(-1)\right) + \left(\frac{3}{2}(1)^2 + 2(-1)^2 + 2(-1)\right) + \left(\frac{3}{2}(1)^2 + 2(-1)^2 + 2(-1)^2 + 2(-1)^2 + 2(-1)^2 + 2(-1)^2 + 2(-1)^$	
	$2(1)\Big\} - \Big\{ \frac{3}{2} \Big(\frac{-2}{3} \Big)^2 + 2 \Big(\frac{-2}{3} \Big) \Big\} \Big]$	
	$\Rightarrow = -\left[\left\{\frac{2}{3} - \frac{4}{3}\right\} - \left\{\frac{3}{2} - 2\right\}\right] + \left[\left\{\frac{3}{2} + 2\right\} - \left\{\frac{2}{3} - \frac{4}{3}\right\}\right]$	
	$\Rightarrow = -\left[\left\{-\frac{2}{3}\right\} - \left\{\frac{-1}{2}\right\}\right] + \left[\left\{\frac{7}{2}\right\} - \left\{\frac{-2}{3}\right\}\right]$	1
	$\Rightarrow = \frac{2}{3} - \frac{1}{2} + \left[\frac{7}{2} + \frac{2}{3}\right]$ $\Rightarrow = \frac{1}{6} + \frac{25}{6} = \frac{13}{3} \text{ sq. units}$	$1\frac{1}{2}$
Question34.	Find the shortest distance between the line $\frac{x-3}{3} = \frac{y-8}{-1} = \frac{z-3}{1}$ and $\frac{x+3}{-3} = \frac{y+7}{2} = \frac{z-6}{4}$.	
Solution:	Given lines are $\frac{x-3}{3} = \frac{y-8}{-1} = \frac{z-3}{1}$ and $\frac{x+3}{-3} = \frac{y+7}{2} = \frac{z-6}{4}$	
	:. Corresponding vector equations of given lines are	
	$\vec{r} = 3\hat{\imath} + 8\hat{\jmath} + 3\hat{k} + \lambda (3\hat{\imath} - \hat{\jmath} + \hat{k}) \qquad \dots (1)$	
	and $\vec{r} = -3\hat{\imath} - 7\hat{\jmath} + 6\hat{k} + \mu(-3\hat{\imath} + 2\hat{\jmath} + 4\hat{k})$ (2)	$\frac{1}{2}$
	Comparing (1) and (2) with $\vec{r} = \overrightarrow{a_1} + \lambda \overrightarrow{b_1}$ and $\vec{r} = \overrightarrow{a_2} + \mu \overrightarrow{b_2}$ respectively, we get	
	$\overrightarrow{a_1} = 3\hat{\imath} + 8\hat{\jmath} + 3\hat{k}$, and $\overrightarrow{b_1} = 3\hat{\imath} - \hat{\jmath} + \hat{k}$	
	$\overrightarrow{a_2} = -3\hat{\imath} - 7\hat{\jmath} + 6\hat{k}$ and $\overrightarrow{b_2} = -3\hat{\imath} + 2\hat{\jmath} + 4\hat{k}$	
		1 -
	Therefore $\overrightarrow{a_2} - \overrightarrow{a_1} = -6\hat{\imath} - 15\hat{\jmath} + 3\hat{k}$	2
	And $\overrightarrow{b_1} \times \overrightarrow{b_2} = (3\hat{\imath} - \hat{\jmath} + \hat{k}) \times (-3\hat{\imath} + 2\hat{\jmath} + 4\hat{k})$	
		1

	$\begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 3 & -1 & 1 \\ -3 & 2 & 4 \end{vmatrix} = -6\hat{i} - 15\hat{j} + 3\hat{k}$	1
	$ \overrightarrow{b_1} \times \overrightarrow{b_2} = \sqrt{36 + 225 + 9} = \sqrt{270}$	$\frac{1}{2}$
	Hence, the shortest distance between the given lines is given by	
	$D = \frac{ (\overrightarrow{a_2} - \overrightarrow{a_1}).(\overrightarrow{b_1} \times \overrightarrow{b_2}) }{ \overrightarrow{b_1} \times \overrightarrow{b_2} } = \frac{ (-6\hat{\imath} - 15\hat{\jmath} + 3\hat{k}).(-6\hat{\imath} - 15\hat{\jmath} + 3\hat{k}) }{\sqrt{270}}$	$1\frac{1}{2}$
	$\frac{ 36+225+9 }{\sqrt{270}} = \frac{270}{\sqrt{270}} = \sqrt{270} = 3\sqrt{30}$	1
OR Question34.	Find the vector equation of the line passing through the point $(-1, 3, -2)$ and perpendicular to the two lines : $\frac{x-5}{1} = \frac{y-3}{2} = \frac{z+1}{6}$ and $\frac{2-x}{3} = \frac{y-1}{2} = \frac{z+4}{5}$.	
Solution:	The vector equation of a line passing through a point with position vector \vec{a} and parallel to \vec{b} is $\vec{r} = \vec{a} + \lambda \vec{b}$. It is given that, the line passes through $(-1, 3, -2)$.	
	So, $\vec{a} = -1\hat{i} + 3\hat{j} - 2\hat{k}$	1
	Given lines are $\frac{x-5}{1} = \frac{y-3}{2} = \frac{z+1}{6}$ and $\frac{x-2}{-3} = \frac{y-1}{2} = \frac{z+4}{5}$	
	It is also given that, line is perpendicular to both given lines. So we can say that the required line is perpendicular to both parallel vectors of two given lines.	
	We know that, $\vec{a} \times \vec{b}$ is perpendicular to both $\vec{a} \& \vec{b}$, so let \vec{b} is cross product of parallel vectors of both lines i.e. $\vec{b} = \vec{b_1} \times \vec{b_2}$	2

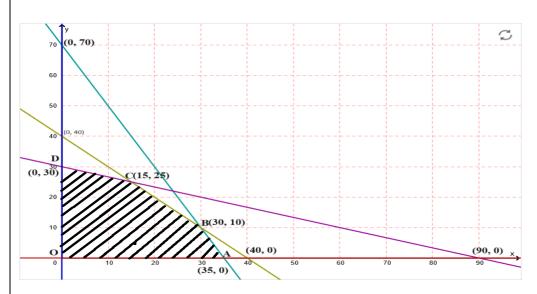
X	0	40
Y	40	0

Points are (0, 40), (40, 0)

Now Put (0, 0) in (3) inequation we have, $0 \le 40$ which is true.

:. Req. region lies towards the origin.

$$x + 3y = 90$$


X	0	30
Y	90	0

Points are (0, 90), (30,0)

Now Put (0, 0) in (4) inequation we have, $0 \le 90$ which is true.

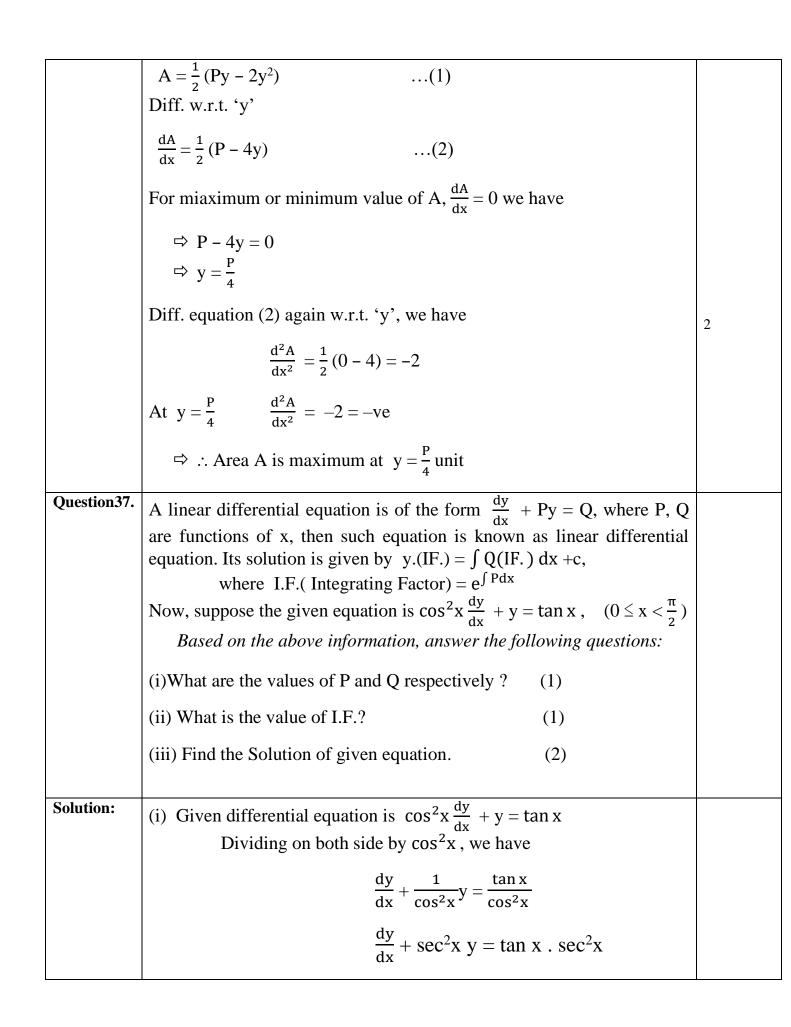
:. Req. region lies towards the origin.

Plot the graph for the set of points

To find minimum and maximum value of Z.

The feasible region ABCD is shown in the figure. Note that the region is bounded. The coordinates of the corner points A, B, C and D are (35, 0), (30, 10), (15, 25) and (0, 30) respectively.

Corner Point	Corresponding Value of
	Z = 30 x + 60 y


1

1

1

1

	A (25 O)	1070 . 37'		
	A (35, 0)	1050←Minimum		
	B (30, 10)	1500		
	C (15, 25)	1950←Maximum		
	D (0, 30)	1800		
	From the table, we find that	·,		
	∴The maximum value of Z	is 1950 at the point B (15, 25).		$1\frac{1}{2}$
	The minimum value of Z	is 1050 at the point C (35, 0).		
	SECTION	ON – E (4Marks × 3Q)		
Question36.	An architect designs an aud	itorium for a school for its cult	ural	
		uditorium is rectangular in sha	pe and has a	
	fixed perimeter P.			
	Based on the above information, answer the following questions.			
	(i) If x and y represents the length and breadth of the rectangular			
		ation between the variable.	C	
		ectangular region, as a function		
C - 1 - 4 :	-	which the area of the floor is n	naxımum.	1
Solution:	Given length of the rectang	ular auditorium = x		1
	Also breadth of the rectang	ular auditorium = y		
	Given perimeter of the recta	angle = P		
	∴ relation between the varia	_		
	relation between the varie	2X + 2y = 1		
	\therefore Area of the floor (A) = le	$ngth \times breadth$		
	A = x	\times y		1
	$A = (\frac{1}{2})^{n}$	$(\frac{P-2x}{2})x \implies A = \frac{1}{2}(Px - 2x^2)$		
	Area of the floor = A = xy For the value of y for which of y, we have $A = (\frac{P-2y}{2})y$	area is maximum, expressing	area in terms	

	d dy D	
	Comparing this differential equation with $\frac{dy}{dx} + Py = Q$, we have	
	\Rightarrow P = sec ² x and Q = tan x . sec ² x	1
	(ii) I.F.(Integrating Factor) = $e^{\int Pdx}$	
	$= e^{\int sec^2 x.dx}$	
	= e ^{tan x}	
	I.F. $= e^{\tan x}$	1
	(iii) Solution of given equation is $y.(IF.) = \int Q(IF.) dx + c$	
	$y(e^{\tan x}) = \int \tan x \sec^2 x \cdot e^{\tan x} + c$	
	Put $\tan x = t \Rightarrow \sec^2 x \cdot dx = dt$	
	$y e^{\tan x} = \int e^t \cdot t \cdot dt$	
	Integrating by part, we have	
	$y e^{\tan x} = t \int e^t dt - \int (\frac{dt}{dt} \int e^t dt) dt$	
	$y e^{\tan x} = t \cdot e^t - \int e^t dt + C$	
	$y e^{tan x} = t.e^t - e^t + C$	
	$y e^{\tan x} = (t - 1) e^t + C$	
	$y e^{\tan x} = (\tan x - 1) e^{\tan x} + C$	2
Question 38.	In a school, teacher asks a question to three students Ravi, Mohit and Sonia. The probability of solving the question by Ravi, Mohit and Sonia are 30%, 25% and 45%, respectively. The probability of making error by Ravi, Mohit and Sonia are 1%, 1.2% and 2%, respectively. <i>Based on the above information, answer the following questions.</i>	
	 (i) Find the total probability of committing an error in solving the question. (ii) If the solution of question is checked by teacher and has some error, 	
	then find the probability that the question is not solved by Ravi. (2)	

Solution:	Let E ₁ , E ₂ and E ₃ be the events that Ravi, Mohit and Sonia solve the	
	question respectively.	
	It is given that $P(E_1) = \frac{30}{100}$, $P(E_2) = \frac{25}{100}$ and $P(E_3) = \frac{45}{100}$	
	Let A be the event that students commit the error.	
	It is given that	
	$P(A/E_1) = \frac{1}{100}$, $P(A/E_2) = \frac{1.2}{100}$ and $P(A/E_3) = \frac{2}{100}$	
	(i) Required probability of committing an error in solving the question = P(A) Therefore,	
	$P(A) = P(E_1)P(A/E_1) + P(E_2)P(A/E_2) + P(E_3)P(A/E_3)$	
	$P(A) = \left(\frac{30}{100}\right) \left(\frac{1}{100}\right) + \left(\frac{25}{100}\right) \left(\frac{1.2}{100}\right) + \left(\frac{45}{100}\right) \left(\frac{2}{100}\right)$	
	$P(A) = \frac{30}{10000} + \frac{30}{10000} + \frac{90}{10000}$	
	$P(A) = \frac{30 + 30 + 90}{10000}$ $P(A) = \frac{150}{10000}$	
	$P(A) = \frac{150}{10000}$	
	$P(A) = \frac{3}{200}$	2
	(ii) Probability that the question is not solved by Ravi when solution of	
	question has some error = $P(\overline{E1/A})$	
	$\therefore 1 - P(E_1/A) = 1 - \frac{P(E1)P(A/E1)}{P(A)}$	
	$=1-\frac{(\frac{30}{100})(\frac{1}{100})}{\frac{3}{200}}$	
	$P(E_1/A) = 1 - \frac{30}{10000} \times \frac{200}{3}$	
		2

$=1-\frac{1}{5}=\frac{4}{5}$	