BSEH Practice Paper (March 2024)

(2023-24)

Marking Scheme

MATHEMATICS

SET-C CODE: 835

⇒ Impo	rtant Instructions: • All answers provided in the Marking scheme are SUGGESTIVE • Examiners are requested to accept all possible alternative correct	answer(s).
	SECTION – A (1Mark × 20Q)	
Q. No.	EXPECTED ANSWERS	Marks
Question 1.	Let R be the relation in the set N given by $R = \{(a, b) : a - b \text{ is } a \}$	
	multiple of 4, $b < 4$. Choose the correct answer.	
Solution:	$(C) (15, 3) \in \mathbf{R}$	1
Question 2	$\sin^{-1}(\sin\frac{3\pi}{5})$ is equal to	
Solution:	$(\mathbf{B}) \frac{2\pi}{5}$	1
Question 3	If $A = \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix}$, and $A + A' = I$, then the value of α is	
	(B) $\frac{\pi}{3}$	1
Question 4.	If A is a square matrix of order 3×3 such that $ A = 4$, then value of $ 3A $ is	
Solution:	(B) 108	1
Question 5.	If the vertices of a triangle are $(2, 7)$, $(1, 1)$ and $(10, 8)$, then	
	by using determinants its area is	
Solution:	(B) $\frac{47}{2}$	1
Question 6.	If $y = \log x - x^2$, then $\frac{d^2 y}{dx^2}$ is equal to:	

Solution:	(C) $\frac{-1}{x^2} - 2$	1
Question 7.	If $\frac{d}{dx} f(x) = 4x^{3/2} - \frac{3}{x^4}$, then f(x) is	
Solution:	(D) $\frac{8}{5}x^{5/2} + \frac{1}{x^3} + C$	1
Question 8.	$\int e^{x}(\sin x + \cos x) dx$ equals:	
Solution:	(A) $e^x \sin x + C$	1
Question 9.	The value of $\int_0^1 \frac{1}{1+x^2} dx$ is	
Solution:	(D) $\frac{\pi}{4}$	1
Question10.	The order of the differential equation $\frac{d^2y}{dx^2} - 3(\frac{dy}{dx})^2 + y = 0$ is :	
Solution:	(A) 2	1
Question11.	Find the integrating factor of the differential equation $\frac{dy}{dx} + \frac{y}{x} = x^2$.	
Solution:	$e^{\int \frac{1}{x} dx} = e^{\log x} = x$	1
Question12.	If $x = 2at^2$, $y = at^4$ then find $\frac{dy}{dx}$.	
Solution:	$\frac{dx}{dt} = 4at \text{ and } \frac{dx}{dt} = 4at^{3}$ $\frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{4at^{3}}{4at} = t^{2}$	1
Question13.	Find the direction cosines of z-axis.	
Solution:	< 0, 0, 1 >	1
Question14.	If $P(A) = \frac{6}{11}$ $P(B) = \frac{5}{11}$ and $P(A \cup B) = \frac{7}{11}$, find $P(A/B)$.	
Solution:	$P(A \cap B) = P(A) + P(B) - P(A \cup B)$	1
	$P(A \cap B) = \frac{6}{11} + \frac{5}{11} - \frac{7}{11} = \frac{4}{11}$	

		1
	$P(A/B) = \frac{P(A \cap B)}{P(B)} = \frac{4/11}{5/11} = \frac{4}{5}$	
Question15.	If \vec{a} and \vec{b} are two adjacent sides of a square then $\vec{a} \cdot \vec{b} = 0$. (True / False)	
Solution:	True	1
Question16.	If A and B are independent events, then A' and B' are also independent. (True / False)	
Solution:	True	1
Question17.	The value of $\hat{\iota}.(\hat{j} \times \hat{k}) + \hat{j}.(\hat{\iota} \times \hat{k}) + \hat{k}.(\hat{\iota} \times \hat{j})$ is	
Solution:	1	1
Question18.	Two events E and F associated with a random experiment areif the probability of occurrence or non occurrence of E is not affected by the occurrence or non occurrence of F.	
Solution:	Independent	
Question19.	Assertion (A): If R is the relation in set $\{1, 2, 3, 4, \}$ given by R = $\{(1,2), (2,2), (1,1), (4,4), (1,3), (3,3), (3,2)\}$ then R is not an equivalence relation. Reason (R): A relation is said to be an equivalence relation if it is reflexive, symmetric and transitive.	
Solution:	(A)	1
Question20.	Assertion (A):Three lines with direction cosines $<\frac{12}{13}$, $\frac{-3}{13}$, $\frac{-4}{13}$ > ; $<\frac{4}{13}$, $\frac{12}{13}$, $\frac{3}{13}$ > $<\frac{3}{13}$, $\frac{-4}{13}$, $\frac{12}{13}$ > are mutually perpendicular.	
	Reason (R): Two lines with direction cosines l_1 , m_1 , n_1 and l_2 , m_2 , n_2 are perpendicular to each other if $l_1l_2 + m_1m_2 + n_1n_2 \neq 0$	
Solution:	(C)	1
	SECTION – B (2Marks × 5Q)	
Question21.	Check the injectivity and surjectivity of the function f: $\mathbb{Z} \rightarrow \mathbb{Z}$ given by $f(x) = x $	

Solution:	Here given function is $f(x) = x $	
	It is seen that $f(-1) = -1 = 1$	
	and $f(1) = 1 = 1$	
	but $-1 \neq 1$.	1
	Hence f is not injective	_
	Now $-2 \in \mathbb{Z}$ but their does not exist any element $x \in \mathbb{Z}$ such that	
	f(x) = -2 i.e. $ x = -2$	
	hence f is not surjective	
	Hence the function is neither injective nor surjective.	1
OR Question21.	Write in the simplest form to the function: $\tan^{-1}\left[\sqrt{\frac{1-\cos x}{1+\cos x}}\right], 0 < x < \pi$	
Solution:	$\tan^{-1}\left[\sqrt{\frac{1-\cos x}{1+\cos x}}\right] = \tan^{-1}\left[\sqrt{\frac{2\sin^2 \frac{x}{2}}{2\cos^2 \frac{x}{2}}}\right] \qquad \qquad 0 < x < \pi$	1
	$= \tan^{-1}\left[\tan\frac{x}{2}\right]$	
	$=\frac{x}{2}$	1
Question 22.	Find the value of X and Y if $X+Y=\begin{bmatrix} 7 & 0\\ 2 & 5 \end{bmatrix}$ and $X-Y=\begin{bmatrix} 3 & 0\\ 0 & 3 \end{bmatrix}$	
Solution:	$\mathbf{X} + \mathbf{Y} = \begin{bmatrix} 7 & 0\\ 2 & 5 \end{bmatrix} \qquad \qquad$	
	$X + Y = \begin{bmatrix} 7 & 0 \\ 2 & 5 \end{bmatrix} \qquad \dots \dots$	
	adding (1) and (2)	
	$2X = \begin{bmatrix} 7 & 0 \\ 2 & 5 \end{bmatrix} + \begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix}$	

	$2X = \begin{bmatrix} 10 & 0 \\ 2 & 8 \end{bmatrix}$ $X = \begin{bmatrix} 5 & 0 \\ 1 & 4 \end{bmatrix}$	1
	Putting the value of X in equation 1	
	$\begin{bmatrix} 5 & 0 \\ 1 & 4 \end{bmatrix} + Y = \begin{bmatrix} 7 & 0 \\ 2 & 5 \end{bmatrix}$	
	$Y = \begin{bmatrix} 7 & 0 \\ 2 & 5 \end{bmatrix} - \begin{bmatrix} 5 & 0 \\ 1 & 4 \end{bmatrix}$ $Y = \begin{bmatrix} 2 & 0 \\ 1 & 1 \end{bmatrix}$	
	$\mathbf{Y} = \begin{bmatrix} 2 & 0\\ 1 & 1 \end{bmatrix}$	1
Question23.	Find the value of k so that the function is continuous is at $x = 5$.	
	$f(x) = \begin{cases} \frac{x - 25}{x - 5}, & x \neq 5 \\ k & x = 5 \end{cases}$	
Solution:	$f(x) = \begin{cases} \frac{x^2 - 25}{x - 5}, & x \neq 5\\ k & x = 5 \end{cases}$ Given function is $f(x) = \begin{cases} \frac{x^2 - 25}{x - 5}, & x \neq 5\\ k & x = 5 \end{cases}$	
	Now	
	$\lim_{x \to 5} f(x) => \lim_{x \to 5} \frac{x^2 - 25}{x - 5}$	
	$\lim_{x \to 5} \frac{(x-5)(x+5)}{x-5} = \lim_{x \to 5} (x+5) = 10$	1
	Since function is continuous, therefore	
	$\lim_{x \to 1} f(x) = f(1)$	
	k = 10	1
Question24.	Verify that the function $y = e^x + 1$, is a solution of the differential equation $\frac{d^2y}{dx^2} - \frac{dy}{dx} = 0$	
Solution:		

	The given function is $y = e^x + 1$	
	$\frac{\mathrm{d}\mathbf{y}}{\mathrm{d}\mathbf{x}} = \mathbf{e}^{\mathbf{x}}$	$\frac{1}{2}$
	$\frac{\mathrm{d}^2 y}{\mathrm{d} x^2} = \mathrm{e}^{\mathrm{x}}$	$\frac{1}{2}$
	$L.H.S. = \frac{d^2y}{dx^2} - \frac{dy}{dx}$	1
	$= e^{\mathbf{x}} - e^{\mathbf{x}} = 0 \implies L.H.S. = R.H.S.$	
OR Question24.	Solve the differential equation $\frac{dy}{dx} = (1 + y^2)(1 + x^2)$.	
Solution:	The given equation is $\frac{dy}{dx} = (1 + y^2)(1 + x^2)$	
	$\Rightarrow \qquad \frac{\mathrm{d}y}{(1+y^2)} = (1+x^2).\mathrm{d}x$	$\frac{1}{2}$
	Integrating both sides, we have	
	$\tan^{-1} y = x + \frac{x^2}{2} + C$	$1\frac{1}{2}$
	which is the required solution.	
Question25.	Two cards are drawn at random and without replacement from a pack of 52 cards find the probability that both the cards are black.	
Solution:	There are 26 black cards in a deck of 52 cards	
	Let P(A)= the probability of getting a black card on the first draw	
	Let $P(B)$ = the probability of getting a black card on the second draw.	
	Therefore, $P(A) = \frac{26}{52} = \frac{1}{2}$	
	Since the second card is not replaced P(B)= $\frac{25}{51}$	1
	Thus probability of getting both the cards black=P(A).P(B)	

r		
	$=\frac{1}{2} \times \frac{25}{51}$	1
	$=\frac{25}{102}$	-
	SECTION – C (3Marks × 8Q)	
Question26.	Show that the relation R in the set a of all the books in a library of a college given by $R = \{(x, y): x \text{ and } y \text{ have same number of pages} \}$ is an equivalence relation.	
Solution:	Set A is the set of all the books in the library of a college.	
	$R = \{(x, y): x \text{ and } y \text{ have same number of pages} \}$	
	Now R is reflexive since $(x, x) \in \mathbf{R}$ as x and x has the same number of pages.	$\frac{1}{2}$
	Let $(x, y) \in \mathbf{R} \implies x$ and y have the same number of pages	
	\Rightarrow y and x have the same number of pages	
	\Rightarrow (y, x) \in R	
	Therefore R is symmetric	1
	Now let $(x, y) \in \mathbf{R}$ and $(y, z) \in \mathbf{R}$	
	\Rightarrow x and y have the same number of pages and y and z have the same number of pages	
	\Rightarrow x and z have the same number of pages	
	\Rightarrow (x, z) \in R	
	Therefore R is transitive.	1
	Hence R is an equivalence relation .	$\frac{1}{2}$
OR Question26.	Write $\tan^{-1}\left(\frac{3a^2x-x^3}{a^3-3ax^2}\right)$, $a > 0; \frac{-a}{\sqrt{3}} \le x \le \frac{a}{\sqrt{3}}$ in the simplest form.	

Solution:	We have $\tan^{-1}(\frac{3a^2x - x^3}{a^3 - 3ax^2})$ $a > 0; \frac{-a}{\sqrt{3}} \le x \le \frac{a}{\sqrt{3}}$	
	Put $x = tan\theta$, we have	$\frac{1}{2}$
	$\tan^{-1}\left(\frac{3a^2 \cdot a \tan \theta - a^3 \tan^3 \theta}{a^3 - 3a \cdot a^2 \tan^2 \theta}\right)$	
	$=\tan^{-1}\left(\frac{3a^3\tan\theta-a^3\tan^3\theta}{a^3-3a^3\tan^2\theta}\right)$	1
	$=\tan^{-1}\left(\frac{a^{3}(3\tan\theta-\tan^{3}\theta)}{a^{3}(1-3\tan^{2}\theta)}\right)$	
	$=\tan^{-1}\frac{(3\tan\theta-\tan^{3}\theta)}{(1-3\tan^{2}\theta)}$	
	$= \tan^{-1} \tan 3\theta$	1
	$=3\theta$	1
	$=3 \tan^{-1} \frac{x}{a}$	$\frac{1}{2}$
Question27.	Given A= $\begin{bmatrix} 2 & 4 & 0 \\ 3 & 9 & 6 \end{bmatrix}$ and B = $\begin{bmatrix} 1 & 4 \\ 2 & 8 \\ 1 & 3 \end{bmatrix}$. Is (AB)' = B'A' ?	
Solution:	$AB = \begin{bmatrix} 2 & 4 & 0 \\ 3 & 9 & 6 \end{bmatrix} \begin{bmatrix} 1 & 4 \\ 2 & 8 \\ 1 & 3 \end{bmatrix}$	
	$= \begin{bmatrix} 2+8+0 & 8+32+0 \\ 3+18+6 & 12+72+18 \end{bmatrix} = \begin{bmatrix} 10 & 40 \\ 27 & 102 \end{bmatrix}$	1
	$(AB)' = \begin{bmatrix} 10 & 40\\ 27 & 102 \end{bmatrix}'$	
	$(AB)' = \begin{bmatrix} 10 & 40 \\ 27 & 102 \end{bmatrix}'$ $(AB)' = \begin{bmatrix} 10 & 27 \\ 40 & 102 \end{bmatrix}$	$\frac{1}{2}$
	Now B'A' = $\begin{bmatrix} 1 & 2 & 1 \\ 4 & 8 & 3 \end{bmatrix} \begin{bmatrix} 2 & 3 \\ 4 & 9 \\ 0 & 6 \end{bmatrix}$	

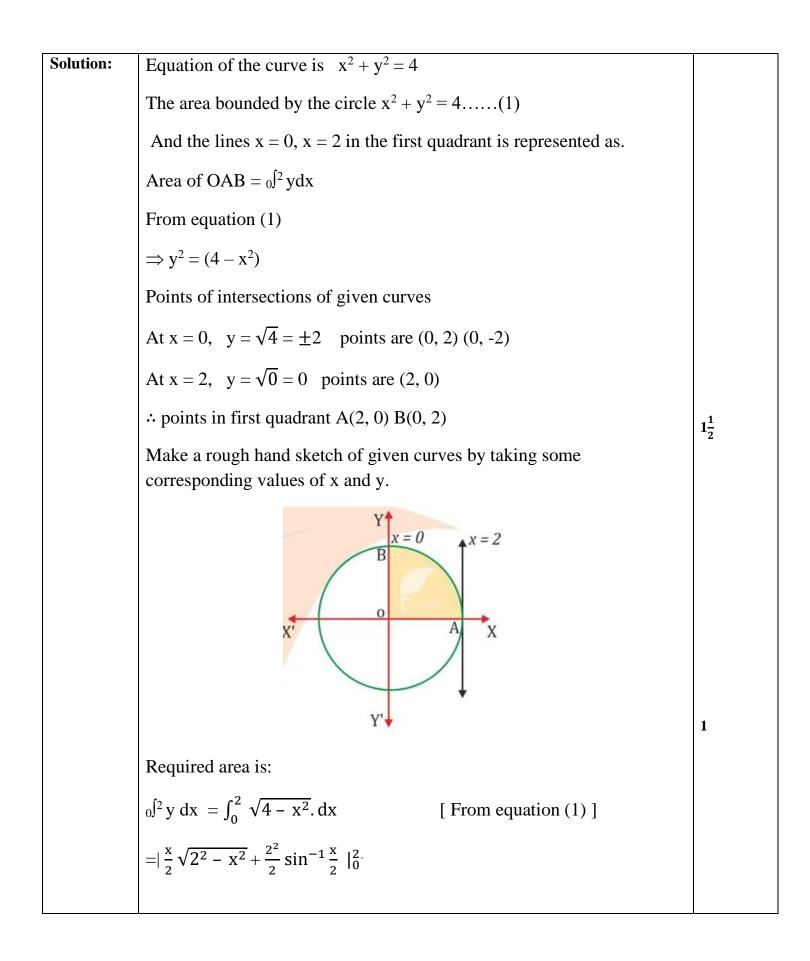
	$= \begin{bmatrix} 2+8+0 & 3+18+6\\ 8+32+0 & 12+72+18 \end{bmatrix}$	1
	$= \begin{bmatrix} 10 & 27 \\ 40 & 102 \end{bmatrix}$	$\frac{1}{2}$
	$\Rightarrow (AB)' = B'A'$	
Question28.	If $y = 3\cos(\log x) + 4\sin(\log x)$, show that $x^2y_2 + xy_1 + y = 0$	
Solution:	Given: $y = 3\cos(\log x) + 4\sin(\log x)$,	
	$\frac{dy}{dx} = \frac{d}{dx}(3\cos(\log x) + 4\sin(\log x))$	
	$= -3\sin(\log x) \cdot \frac{1}{x} + 4\cos(\log x) \cdot \frac{1}{x}$	1
	$x\frac{dy}{dx} = -3\sin(\log x) + 4\cos(\log x)$	
	$x\frac{d^2y}{dx^2} + \frac{dy}{dx} = \frac{d}{dx}(-3\sin(\log x) + 4\cos(\log x))$	
	$x\frac{d^{2}y}{dx^{2}} + \frac{dy}{dx} = -3\cos(\log x) \cdot \frac{1}{x} - 4\sin(\log x) \cdot \frac{1}{x}$	
	$x\frac{d^{2}y}{dx^{2}} + \frac{dy}{dx} = -\frac{1}{x} (3\cos(\log x) + 4\sin(\log x))$	1
	$x\frac{d^2y}{dx^2} + \frac{dy}{dx} = -\frac{1}{x}y$	
	$x^2 \frac{d^2 y}{dx^2} + x \frac{d y}{dx} = -y$	
	$x^2 \frac{d^2 y}{dx^2} + x \frac{dy}{dx} + y = 0$	
	$x^2 y_2 + x y_1 + y = 0$	1
	Hence proved	
Question29.	A stone is dropped into a quiet lake and waves move in circles at the	
	speed of 5 cm/s. At the instant when the radius of the circular wave is 8	

	cm, how fast is the enclosed area increasing?	
Solution:	Let r cm be the radius of the circular wave at any instant.	
	Therfore, $\frac{dr}{dt} = 5$ cm/s	$\frac{1}{2}$
	Now, the area of the circular wave is given as	
	$A = \pi r^2$	$\frac{1}{2}$
	Diff. w.r.t. 't'	
	$\frac{\mathrm{dA}}{\mathrm{dt}} = 2\pi \mathrm{r} \mathrm{cm/s^2}$	1
	Instant when $r = 8 \text{ cm}$	
	$\frac{\mathrm{dA}}{\mathrm{dt}} = 2\pi(8) \mathrm{~cm/s^2}$	
	$\frac{dA}{dt} = 16\pi \text{ cm/s}^2$	1
Question 30	Integrate: $\int \frac{x}{(x+1)(x+2)} dx$	
Solution:	$I = \int \frac{x}{(x+1)(x+2)} dx$	
	$\frac{x}{(x+1)(x+2)} = \frac{A}{(x+1)} + \frac{B}{(x+2)}$	$\frac{1}{2}$
	$\Rightarrow x = A(x+2) + B(x+1)$	
	Put $x = -1$, $-1 = A(-1+2) + B(-1+1) => -1 = A$	
	Put x = -2, $-1 = A(-2+2) + B(-2+1) \implies -1 = -B$	
	\therefore A = -1 and B = 1	1
	$\Rightarrow \frac{x}{(x+1)(x+2)} = \frac{-1}{(x+1)} + \frac{1}{(x+2)}$	
	$\Rightarrow I = \int \left(\frac{-1}{(x+1)} + \frac{1}{(x+2)}\right) dx$	

	$\Rightarrow I = -\log x+1 + \log x+2 + C$	$1\frac{1}{2}$
OR Question30.	Evaluate: $\int_0^{\frac{\pi}{2}} \frac{\sqrt{\sin x}}{\sqrt{\sin x} + \sqrt{\cos x}} dx$	
Solution:	$I = \int_0^{\frac{\pi}{2}} \frac{\sqrt{\sin x}}{\sqrt{\sin x} + \sqrt{\cos x}} dx \qquad \dots (1)$	
	Using property of definite integral $\int_0^a f(x) dx = \int_0^a f(a - x) dx$	
	$I = \int_0^{\frac{\pi}{2}} \frac{\sqrt{\sin(\frac{\pi}{2} - x)}}{\sqrt{\sin(\frac{\pi}{2} - x)} + \sqrt{\cos(\frac{\pi}{2} - x)}} dx$	
	$I = \int_0^{\frac{\pi}{2}} \frac{\sqrt{\cos x}}{\sqrt{\cos x} + \sqrt{\sin x}} dx \qquad \dots (2)$	1
	Adding (1) and (2)	
	$2I = \int_0^{\frac{\pi}{2}} \frac{\sqrt{\sin x} + \sqrt{\cos x}}{\sqrt{\sin x} + \sqrt{\cos x}} dx$	1
	$2I = \int_0^{\frac{\pi}{2}} 1 dx$	
	$2\mathbf{I} = \mathbf{x} _0^{\frac{\pi}{2}}$	
	$2I = \frac{\pi}{2}$	
	$I = \frac{\pi}{4}$	1
Question31.	If \vec{a} , \vec{b} , \vec{c} are unit vectors such that $\vec{a} + \vec{b} + \vec{c} = \vec{0}$, find the value of $\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}$.	
Solution:	Given that $ \vec{a} = \vec{b} = \vec{c} = 1$	$\frac{1}{2}$
	We know $ \vec{a} ^2 = \vec{a}.\vec{a}$	

	$\therefore \vec{a} + \vec{b} + \vec{c} ^2 = (\vec{a} + \vec{b} + \vec{c}).(\vec{a} + \vec{b} + \vec{c})$	$\frac{1}{2}$
	Since $\vec{a} + \vec{b} + \vec{c} = \vec{0}$, therefore	
	$\left \vec{0} \right ^{2} = \vec{a}.\vec{a} + \vec{a}.\vec{b} + \vec{a}.\vec{c} + \vec{b}.\vec{a} + \vec{b}.\vec{b} + \vec{b}.\vec{c} + \vec{c}.\vec{a} + \vec{c}.\vec{b} + \vec{c}.\vec{c}$	
	$\left \vec{0} \right ^{2} = \left \vec{a} \right ^{2} + \left \vec{b} \right ^{2} + \left \vec{c} \right ^{2} + 2\vec{a}.\vec{b} + 2\vec{b}.\vec{c} + 2\vec{c}.\vec{a} \qquad [\because \vec{a}.\vec{b} = \vec{b}.\vec{a}]$	$1\frac{1}{2}$
	$0 = 1 + 1 + 1 + 2 (\vec{a}.\vec{b} + \vec{b}.\vec{c} + \vec{c}.\vec{a})$	
	2 ($\vec{a}.\vec{b} + \vec{b}.\vec{c} + \vec{c}.\vec{a}$) = -3	
	$\vec{a}.\vec{b} + \vec{b}.\vec{c} + \vec{c}.\vec{a} = \frac{-3}{2}$	$\frac{1}{2}$
	SECTION – C (5Marks × 4Q)	
Question32.	Solve the system of equations $x - y + z = 4$ 2x + y - 3z = 0 x + y + z = 2	
Solution:	$A = \begin{bmatrix} 1 & -1 & 1 \\ 2 & 1 & -3 \\ 1 & 1 & 1 \end{bmatrix}$	
	A = 1(1 + 3) + 1(2 + 3) + 1(2 - 1) = 1(4) + 1(5) + 1(1)	
	= 4 + 5 + 1	
	$= 10 \neq 0$;	1
	Inverse of matrix exists.	
	To find the inverse of matrix:	
	Cofactors of matrix:	
	$A_{11} = 4$, $A_{12} = -5$, $A_{13} = 1$	
	$\begin{array}{ll} A_{11}=4, & A_{12}=-5, & A_{13}=1\\ A_{21}=2, & A_{22}=0, & A_{23}=-2\\ A_{31}=2, & A_{32}=5, & A_{33}=3 \end{array}$	
	$A_{31} = 2, A_{32} = 5, A_{33} = 3$	

$$\begin{array}{c|c} \Rightarrow \mbox{ adj.A} = \begin{bmatrix} 4 & -5 & 1 \\ 2 & 0 & -2 \\ 2 & 5 & 3 \end{bmatrix}^{\prime} = \begin{bmatrix} 4 & 2 & 2 \\ -5 & 0 & 5 \\ 1 & -2 & 3 \end{bmatrix} \qquad 1 \\ So, \ A^{-1} = \frac{adjA}{|A|} \\ A^{-1} = \frac{1}{10} \begin{bmatrix} 4 & 2 & 2 \\ -5 & 0 & 5 \\ 1 & -2 & 3 \end{bmatrix} \\ Now, \ matrix of equations can be written as: AX=B \\ \begin{bmatrix} 1 & -1 & 1 \\ 2 & 1 & -3 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 4 \\ 0 \\ 2 \end{bmatrix} \\ And, \ X = A^{-1}B \\ \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \frac{1}{10} \begin{bmatrix} 4 & 2 & 2 \\ -5 & 0 & 5 \\ 1 & -2 & 3 \end{bmatrix} \begin{bmatrix} 4 \\ 0 \\ 2 \end{bmatrix} \\ And, \ X = A^{-1}B \\ \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \frac{1}{10} \begin{bmatrix} 4 & 2 & 2 \\ -5 & 0 & 5 \\ 1 & -2 & 3 \end{bmatrix} \begin{bmatrix} 4 \\ 0 \\ 2 \end{bmatrix} \\ \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ -5 \\ 1 \\ -2 \\ 3 \end{bmatrix} \begin{bmatrix} 4 \\ 0 \\ 2 \end{bmatrix} \\ \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix} \\ Therefore, \ x = 2, \ y = -1 \ and \ z = 1. \end{bmatrix}$$



	= $[((2/2)\sqrt{4-4} + 2\sin^{-1}1) - 0(0+2\sin^{-1}0)]$	$1\frac{1}{2}$
	$= [0 + 2 (\pi/2)]$	
	$=\pi$ sq units	
	1	1
OR Question33.	Find the area of the region bounded by the ellipse $\frac{x^2}{4} + \frac{y^2}{36} = 1$	
Solution:	Here $\frac{x^2}{4} + \frac{y^2}{36} = 1$ (1)	
	It is a vertical ellipse having center at origin and is symmetrical about both axes (if we change y to -y or x to -x, equation remain same). $y^2 = y^2$	$\frac{1}{2}$
	Standard equation of an ellipse is $\frac{x^2}{b^2} + \frac{y^2}{a^2} = 1$	2
	By comparing, $a = 6$ and $b = 2$	
	From equation (1)	
	$\Rightarrow y^2 = \frac{36}{4} \left(4 - x^2 \right) \Rightarrow y^2 = 9 \left(4 - x^2 \right)$	
	$\Rightarrow y = 3\sqrt{4 - x^2} \qquad \dots (2)$	
	Points of Intersections of ellipse (1) with x-axis ($y = 0$)	
	Put $y = 0$ in equation (1), we have	
	$x^{2}/4 = 1$	
	$\Rightarrow x^2 = 4$	
	\Rightarrow x = ±2	
	Therefore, Intersections of ellipse(1) with x-axis are (2,0) and (-2, 0).	1

Now again,

Points of Intersections of ellipse (1) with y-axis (x = 0)

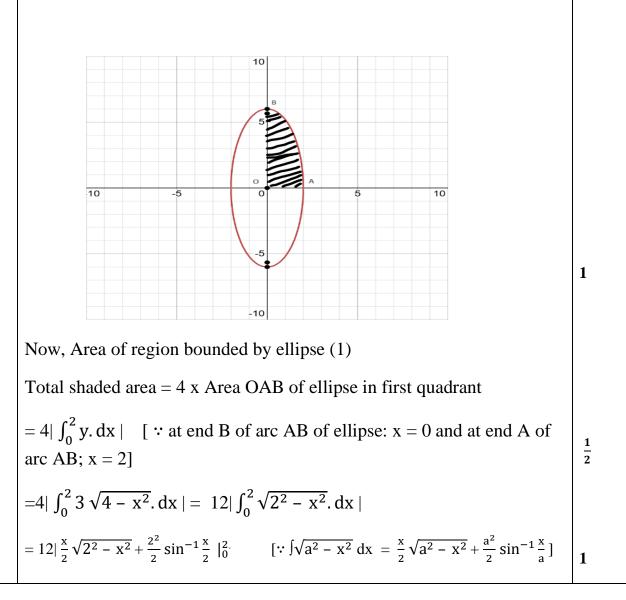
Putting x = 0 in equation (1), $y^2/36 = 1$

 \Rightarrow y² = 36

 \Rightarrow y = ± 6

Therefore, Intersections of ellipse (1) with y-axis are (0, 6) and (0, -6)

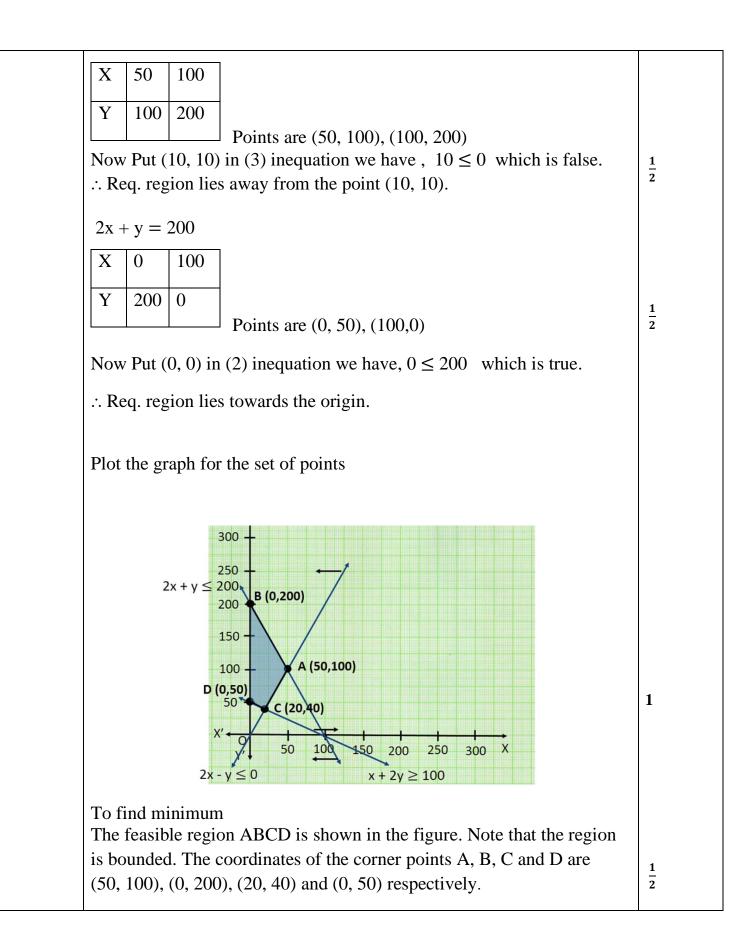
for arc of ellipse in first quadrant.



	$12[((2/2)\sqrt{4-4} + 2\sin^{-1}1) - (0+2\sin^{-1}0)] = 12[0+(2\pi/2)]$	
	$= 12(\pi) = 12\pi$ sq. units	
		1
Question34.	Find the shortest distance between the lines l_1 and l_2 whose vector equations are $\vec{r} = (1 - t)\hat{i} + (t - 2)\hat{j} + (3 - 2t)\hat{k}$ and $\vec{r} = (s + 1)\hat{i} + (2s - 1)\hat{j} - (2s + 1)\hat{k}$	
Solution:	$\vec{r} = (1 - t)\hat{i} + (t - 2)\hat{j} + (3 - 2t)\hat{k}$	
	$\vec{r} = (s+1)\hat{\iota} + (2s-1)\hat{j} - (2s+1)\hat{k}$	
	$\vec{r} = \hat{\iota} - 2\hat{\jmath} + 3\hat{k} + t(-\hat{\iota} + \hat{\jmath} - 2\hat{k})$ (1)	
	$\vec{r} = \hat{\imath} - \hat{\jmath} - \hat{k} + s(\hat{\imath} + 2\hat{\jmath} - 2\hat{k})$ (2)	
	Comparing (1) and (2) with $\vec{r} = \vec{a_1} + \lambda \vec{b_1}$ and $\vec{r} = \vec{a_2} + \mu \vec{b_2}$ respectively,	
	we get	
	$\overrightarrow{a_1} = \hat{\imath} - 2\hat{\jmath} + 3\hat{k}$, and $\overrightarrow{b_1} = -\hat{\imath} + \hat{\jmath} - 2\hat{k}$	1
	$\overrightarrow{a_2} = \hat{\imath} - \hat{\jmath} - \hat{k}$ and $\overrightarrow{b_2} = \hat{\imath} + 2\hat{\jmath} - 2\hat{k}$	1
	Therefore	
	$\overrightarrow{a_2} - \overrightarrow{a_1} = (\hat{\imath} - \hat{\jmath} - \hat{k}) - (\hat{\imath} - 2\hat{\jmath} + 3\hat{k})$	$\frac{1}{2}$
	$=\hat{j}-4\hat{k}$	
	and	
	$\overrightarrow{b_1} \times \overrightarrow{b_2} = (-\hat{\iota} + \hat{j} - 2\hat{k}) \times (\hat{\iota} + 2\hat{j} - 2\hat{k})$	
	$ = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ -1 & 1 & -2 \\ 1 & 2 & -2 \end{vmatrix} = \hat{i} - 4\hat{j} - 3\hat{k} $	$1\frac{1}{2}$
	$ \overrightarrow{b_1} \times \overrightarrow{b_2} = \sqrt{1+16+9} = \sqrt{26}$	

	Hence, the shortest distance between the given lines is given by	
	$D = \frac{ (\overrightarrow{a_2} - \overrightarrow{a_1}).(\overrightarrow{b_1} \times \overrightarrow{b_2}) }{ \overrightarrow{b_1} \times \overrightarrow{b_2} } = \frac{ (\hat{j} - 4\hat{k}).(\hat{i} - 4\hat{j} - 3\hat{k}) }{\sqrt{26}} = \frac{ -4 + 12 }{\sqrt{26}} =$ $D = \frac{8}{\sqrt{26}}$	$1\frac{1}{2}$
	$= \frac{8}{\sqrt{26}} \times \frac{\sqrt{26}}{\sqrt{26}}$ $= \frac{8\sqrt{26}}{26} = \frac{4\sqrt{26}}{13} \text{ units}$	1
	Therfore the shortest distance between two lines is $\frac{3\sqrt{2}}{2}$ units	$\frac{1}{2}$
OR Question34.	Find the vector equation of the line passing through the point (2,-1,3) and perpendicular to the two lines : $\frac{x-1}{2} = \frac{y-1}{-2} = \frac{z+1}{1}$ and $\frac{x-2}{1} = \frac{y+1}{2} = \frac{z-3}{2}$.	
Solution:	The vector equation of a line passing through a point with position vector \vec{a} and parallel to \vec{b} is $\vec{r} = \vec{a} + \lambda \vec{b}$. It is given that, the line passes through $(2, -1, 3)$. So, $\vec{a} = 2\hat{i} - \hat{j} + 3\hat{k}$	1
	Given lines are $\frac{x-1}{2} = \frac{y-1}{-2} = \frac{z+1}{1}$ and $\frac{x-2}{1} = \frac{y+1}{2} = \frac{z-3}{2}$ It is also given that, line is perpendicular to both given lines. So we can say that the required line is perpendicular to both parallel vectors of two	
	given lines. We know that, $\vec{a} \times \vec{b}$ is perpendicular to both $\vec{a} & \vec{b}$, so let \vec{b} is cross product of parallel vectors of both lines i.e. $\vec{b} = \vec{b_1} \times \vec{b_2}$ where $\vec{b_1} = 2\hat{i} - 2\hat{j} + \hat{k}$ and $\vec{b_2} = \hat{i} + 2\hat{j} + 2\hat{k}$ and Required Normal	2

	$\vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & -2 & 1 \\ 1 & 2 & 2 \end{vmatrix}$ $= \hat{i}(-4-2) - \hat{j}(4-1) + \hat{k}(4+2)$ $\vec{b} = -6\hat{i} - 3\hat{j} + 6\hat{k}$ Now, by substituting the value of $\vec{a} \& \vec{b}$ in the formula $\vec{r} = \vec{a} + \lambda \vec{b}$, we get	1	
	$\vec{r} = (2\hat{\imath} - \hat{\jmath} + 3\hat{k}) + \lambda(-6\hat{\imath} - 3\hat{\jmath} + 6\hat{k})$		
Question35.	Solve the following problem graphically: Minimise and Maximise $Z = x + 2y$ Subject to the constraints: $x + 2y \ge 100$ $2x - y \le 0$ $2x + y \le 200$ $x, y \ge 0$		
Solution:	$Z = x + 2y \qquad \dots(1)$ $x + 2y \ge 100 \qquad \dots(2)$ $2x - y \le 0 \qquad \dots(3)$ $2x + y \le 200 \qquad \dots(4)$ $x \ge 0, y \ge 0 \qquad \dots(5)$ First of all, let us graph the feasible region of the system of linear inequalities (2) to (5). Let Z= 200 x + 500 y \qquad \dots(1) Converting inequalities to equalities $x + 2y = 100$ $\boxed{X 0 100}$ $\boxed{Y 50 0}$ Points are (0, 50), (100, 0) Now Put (0, 0) in (2) inequation we have $0 \ge 100$ which is false. \therefore Req. region lies away from the origin. 2x - y = 0	$\frac{1}{2}$	



	Corner Point	Corresponding Value of		
		Z = x + 2 y		
	A (50, 100)	250		
	B (0, 200)	400←Maximum		1
	C (20, 40)	100←Minimum		$1\frac{1}{2}$
	D (0, 50)	100←Minimum		
	From the table, we find that	· · · ·		$\frac{1}{2}$
	∴The maximum value of Z	is 400 at the point B (0, 200).		-
	The minimum value of Z	is 100 at the point C (20, 40) a	nd D (0, 50).	
	SECTI	$ON - E (4Marks \times 3Q)$		
Question36.		e 24 cm is to be made into a bo	-	
	by cutting a square of side x cm from each corner and folding up the flaps to form a box			
	flaps to form a box. On the basis of above information, answer the following questions			
		and height of the box formed		
	(1) white the length, breadth	and height of the box formed	(1)	
	(ii) Express volume V of the	e box in terms of x.	(1) (1)	
	• • •	he box is maximum, when $x = 4$		
Solution:	Let x be the side of the square to be cut off from each of the corners.		1	
	\therefore Length of the box formed	d = (24 - 2x) cm		
	Breadth of the box formed = $(24 - 2x)$ cm			
	Height of the box formed	l = x cm		

	\therefore Volume of the box (V) = length × breadth × height		
	$\mathbf{V} = (24 - 2\mathbf{x}) \times (24 - 2\mathbf{x}) \times \mathbf{x}$	1	
	$V = 4x^3 - 96x^2 + 576x$		
	Volume of the box = $V = 4x^3 - 96x^2 + 576x$ (1)		
	Diff. w.r.t. 'x' $\frac{dV}{dx} = 12x^2 - 192x + 576$	2	
	$= 12(x^2 - 16x + 48) \qquad \dots (2)$		
	For miaximum or minimum value of V, $\frac{dV}{dx} = 0$ we have		
	$\Rightarrow x^2 - 16x + 48 = 0$		
	$\Rightarrow (x-12)(x-4) = 0$		
	\Rightarrow x = 12 or x = 4 [Rejecting x = 12 as it is not possible]		
	Diff. equation (2) again w.r.t. 'x', we have		
	$\frac{d^2V}{dx^2} = 12(\ 2x - 16)$		
	At x = 4 $\frac{d^2 V}{dx^2} = 12(2(4) - 16) = -ve$		
	\therefore Volume V is maximum at x = 4cm		
Question37.	A finear differential equation is of the form $\frac{1}{dx} + Fy = Q$, where F, Q		
	are functions of x, then such equation is known as linear differential equation. Its solution is given by $y.(IF.) = \int Q(IF.) dx + c$, where I.F.(Integrating Factor) = $e^{\int P dx}$		
	Now, consider the given equation is $(1 + \sin x) \frac{dy}{dx} + y\cos x = -x$ Based on the above information, answer the following questions:		
	(i) What are the values of P and Q respectively? (1)		
	(ii) What is the value of I.F.? (1)		

	(iii)Find the Solution of given equation. (2)	
Solution:	(i) Given differential equation is $(1 + \sin x) \frac{dy}{dx} + y\cos x = -x$ Dividing on both side by $(1 + \sin x)$, we have	
	$\frac{\mathrm{d}y}{\mathrm{d}x} + \frac{\cos x}{(1+\sin x)}y = \frac{-x}{(1+\sin x)}$	
	Comparing this differential equation with $\frac{dy}{dx} + Py = Q$, we have	
	$\Rightarrow P = \frac{\cos x}{(1 + \sin x)} \text{ and } Q = \frac{-x}{(1 + \sin x)}$	1
	(ii) I.F.(Integrating Factor) = $e^{\int Pdx}$ = $e^{\int \frac{\cos x}{(1 + \sin x)} dx}$	
	$= e^{\log(1+\sin x)}$	
	I.F. $= 1 + \sin x$	1
	(iii) Solution of given equation is	
	$y.(IF.) = \int Q(IF.) dx + c$	
	$y (1 + \sin x) = \int \frac{-x}{(1 + \sin x)} (1 + \sin x) + c$	
	$y (1 + \sin x) = -\int x dx + c$	
	$y(1 + \sin x) = \frac{-x^2}{2} + c$	2
Question 38.	A doctor is to visit a patient. From the past experience, it is known that the probabilities that he will come by train, bus, scooter or by other means of transport are respectively $\frac{3}{10}$, $\frac{1}{5}$, $\frac{1}{10}$ and $\frac{2}{5}$. The probabilities	
	10, 5, 10	

	that he will be late are $\frac{1}{4}$, $\frac{1}{3}$ and $\frac{1}{12}$ if he comes by train, bus and scooter	
	respectively, but if he comes by other means of transport, then he will	
	not be late.	
	On the basis of above information, answer the following questions.	
	(i) Find the probability that he is late.	
	(ii) When he arrives, he is late. What is the probability that he comes by train?	
	(iii) When he arrives, he is late. What is the probability that he comes by bus?	
Solution:	Let E_1 , E_2 , E_3 and E_4 be the events that the doctor comes by train, bus,	
	scooter and other means of transport respectively.	
	It is given that $P(E_1) = \frac{3}{10}$, $P(E_2) = \frac{1}{5}$, $P(E_3) = \frac{1}{10}$ and $P(E_4) = \frac{2}{5}$	
	Let A be the evnent that doctor visit the patient late . It is given that	
	$P(A/E_1) = \frac{1}{4}$, $P(A/E_2) = \frac{1}{3}$, $P(A/E_3) = \frac{1}{12}$ and $P(A/E_4) = 0$	
	(i) Required probability that doctor is late = P(A) Therefore,	
	$P(A) = P(E_1)P(A/E_1) + P(E_2)P(A/E_2) + P(E_3)P(A/E_3) + P(E_4)P(A/E_4)$	
	$P(A) = \left(\frac{3}{10}\right)\left(\frac{1}{4}\right) + \left(\frac{1}{5}\right)\left(\frac{1}{3}\right) + \left(\frac{1}{10}\right)\left(\frac{1}{12}\right) + \left(\frac{2}{5}\right)(0)$	
	$P(A) = \frac{3}{40} + \frac{1}{15} + \frac{1}{120}$	
	$P(A) = \frac{9+8+1}{120}$	
	$P(A) = \frac{18}{120}$	
	$P(A) = \frac{3}{20}$	2

(ii) Probability that	he comes by train given that he is late = $P(E_1/A)$	
$\therefore P(E_1/A) = \frac{P(E_1)I}{P}$	P(A/E1) (A)	
$=\frac{(\frac{3}{10})(\frac{1}{4})}{\frac{3}{20}}$)	1
$P(E_1/A) = \frac{3}{40} \times \frac{20}{3} =$	$=\frac{1}{2}$	
(iii) Probability that	he comes by bus given that he is late = $P(E_2/A)$	
$\therefore P(E_2/A) = \frac{P(E_2)I}{P}$	P(A/E2) (A)	
$=\frac{(\frac{1}{5})(\frac{1}{3})}{\frac{3}{20}}$	_	
$P(E_2/A) = \frac{1}{15} \times \frac{20}{3} =$	$=\frac{4}{9}$	1