BSEH MARKING SCHEME

CLASS- XII Chemistry (March-2024) Code: A

 The answer points given in the marking scheme are not final. These are suggestive and indicative. If the examinee has given different, but appropriate answers, then he should be given appropriate marks.

Q.	Answers			
No.				
1.	a) Copper dissolved in Gold.	1		
2.	b) Increases with increase in temperature	1		
3.	d) S m ⁻¹	1		
4.	d) All of these	1		
5.	a) 0	1		
6.	b) Frequency factor	1		
7.	a) Sc	1		
8.	a) Vitamin B ₁₂	1		
9.	c) Nal	1		
10.	b) n-Butane			
11.	b) 3-Phenylprop-2-en-1-al	1		
12.	c) Position isomerism	1		
13.	b) Ribose	1		
14.	d) Vitamin K	1		
15.	a) Both A and R are true, and R is the correct	1		
	explanation of A.			

16.	a) Both A and R are tr explanation of A.	ue, and R is the correct	1	
17.	a) Both A and R are tree explanation of A.	ue, and R is the correct	1	
18.	d) A is false but R is tru	e	1	
19.	Ideal Solutions	Non-ideal solutions	2	
	1. Those liquid-liquid	1. Those liquid-liquid		
	solutions which obey	solutions which do not		
	Raoults' law at each	obey Raoults' law at		
	concentration.	each concentration.		
	2. The molecular	2. The molecular		
	interactions of solution	interactions of solution		
	is same as that of	is not same as that of		
	solute and solvent. solute and solvent.			
	$3. \ \Delta V_{mix} = 0 \qquad \qquad 3. \ \Delta V_{mix} \neq 0$			
	$4. \ \Delta H_{mix} = 0 \qquad \qquad 4. \ \Delta H_{mix} \neq 0$			
	(any two differences, 1 mark each)			
	Or			
	Given molarity (M) = 0.15 M			
	Volume (V) = 250 mL			
	Molar mass of solute $(M_2) = 122 \text{ g/mol}$			
	Mass of solute $(w_2) = ?$			
	$\therefore M = \frac{w_2 \times 1000}{M_2 \times V}$			
		$(1/_2 mark)$		
	$\therefore w_2 =$	$\frac{M \times M_2 \times V}{1000}$		

Code: A

Download from www.MsEducationTv.com

2

	$\Rightarrow w_2 = \frac{122 \times 250 \times 0.15}{1000} g$ $(1/2 mark)$ $\Rightarrow w_2 = 4.575 g$ $(1/2 mark for correct answer, 1/2 mark for unit)$	
20.	First Law: The amount of chemical reaction which occurs at any electrode during electrolysis by a current is proportional to the quantity of electricity passed through the electrolyte. (1 mark) Second Law: The amounts of different substances liberated by the same quantity of electricity passing through the electrolytic solution are proportional to their chemical equivalent weights.	2
	(1 mark)	
21.	The reaction which is not of first order but behaves like first order is called pseudo first order reaction. (1 mark) Example: acid hydrolysis of ethyl acetate or inversion of cane sugar	2

		
	(Any one, 1 mark)	
22.	Interstitial compounds are those which are formed	
	when small atoms like H, C or N are trapped inside	
	the crystal lattices of metals.	
	(1 mark)	
	Interstitial compounds are well known for transition	0
	compounds due to their closed crystalline structure	2
	with voids in them. The atomic size of transition	
	metals is very large hence have large voids to occupy	
	these small atoms.	
	(1 mark)	
23.	Alkyl halides react with sodium in dry ether to give	
	hydrocarbons containing double the number of carbon	
	atoms present in the halide. This reaction is known	
	as Wurtz reaction.	
	(1 mark)	
	$2CH_3Br + 2Na \xrightarrow{dry eth} CH_3CH_3 + 2NaBr$	
	Methyl bromide Ethane	
	(1 mark)	2
	Or	
	Groups which possess two different nucleophilic	
	centres and are called ambident nucleophiles.	
	(1 mark)	
	nitrite ion represents an ambident nucleophile with	
	two different points of linkage. The linkage through	

		1	
	oxygen results in alkyl nitrites while through nitrogen		
	atom, it leads to nitroalkanes.		
	(1 mark)		
24.	i) Methanoic acid is used in rubber, textile, dyeing,		
	leather and electroplating industries.		
	ii) Ethanoic acid is used as solvent and as vinegar		
	in food industry.		
	iii) Hexanedioic acid is used in the manufacture of		
	nylon-6, 6.	2	
	iv) Esters of benzoic acid are used in perfumery.		
	v) Sodium benzoate is used as a food preservative.		
	vi) Higher fatty acids are used for the manufacture		
	of soaps and detergents.		
	(Any two, 1 mark each)		
25.	i)		
	$CH_{3}COOH \xrightarrow{(ii)} H_{3}O^{+} CH_{3}CH_{2}OH \xrightarrow{(iii)} CH_{3}CH_{2}CH$		
	Ethanoic acid Ethanolic NaCN		
	$CH_3CH_2COOH \leftarrow \frac{H^+/H_2O}{CH_3CH_2CN}$		
	Propanoic acid		
	(1 mark)	2	
	ii)	Z	
	Sn/HCI CHCI-/KOH/A		
	$CH_3 - NO_2 \longrightarrow CH_3 - NH_2 \longrightarrow CH_3 - NC$		
	CH ₃ - NH - CH ₃		
	Dimethylamine		

5

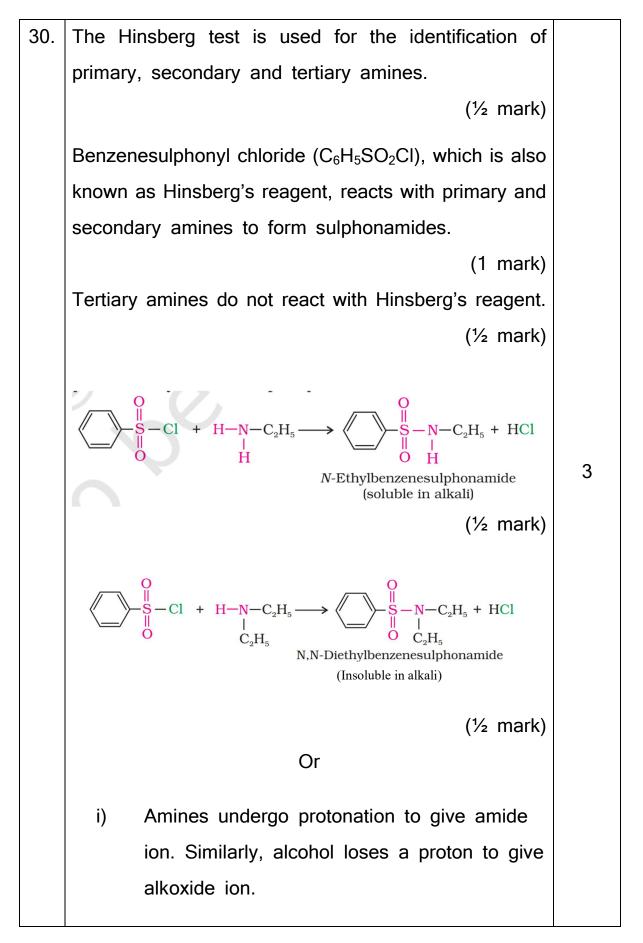
Chemistry

Code: A

26.	Here	
	Vapour Pressure of solution at normal boiling point	
	(p ₁) = 1.004 bar	
	Vapour Pressure of pure water at normal boiling	
	point	
	$(p^{o}_{1}) = 1.013$ bar	
	(½ mark)	
	Let mass of solution (W) = 100 g	
	(½ mark)	
	Mass of solute $(w_2) = 2 g$	3
	Mass of solvent $(w_1) = 98 g$	
	Molar mass of solvent (water) $(M_1) = 18 \text{ g/mol}$	
	According to Raoult's law:	
	$\frac{p_1^o - p_1}{p_1^o} = \frac{\frac{W_2}{M_2}}{\frac{W_1}{M_1} + \frac{W_2}{M_2}}$	
	(½ mark)	
	$\Rightarrow \frac{1.013 - 1.004}{1.013} = \frac{\frac{2}{M_2}}{\frac{98}{18} + \frac{2}{M_2}}$	
	(½ mark)	
	$\Rightarrow M_2 = 40.98 \ g/mol$	
	(¹ / ₂ mark for answer, ¹ / ₂ mark for unit)	
27.	T ₁ =298K	
	After the increase in temperature by 10K	3

6

Code: A


 $T_2 = (T_1 + 10)K$ T₂=298+10=308K (1/2 mark) Let us take the value of $K_1=K$ Now, $K_2=2K$ Also, R=8.314JK⁻¹mol⁻¹ Now, substituting these values in the Arrhenius equation: $log(\frac{k_2}{k_1}) = \frac{E_a}{2.303R} \left[\frac{T_2 - T_1}{T_1 T_2} \right]$ (1 mark) We get: $log(\frac{2k}{k}) = \frac{E_a}{2.303 \times 8.314} \left[\frac{308 - 298}{308 \times 298} \right]$ $(\frac{1}{2} \text{ mark})$ $\therefore E_a = 52897.78 \text{Jmol}^{-1}$ =52.9kJmol⁻¹ (1/2 mark for answer, 1/2 mark for unit)

Chemistry

7

```
from which orange sodium dichromate
                                               can
                                                    be
    crystallised.
    2Na_2CrO_4 + 2H^+ \rightarrow Na_2Cr_2O_7 + 2Na^+ + H_2O
                                              (1 mark)
    Sodium dichromate is more soluble than potassium
    dichromate. The latter is therefore, prepared by
    treating the solution of sodium dichromate with
    potassium chloride and orange crystals of potassium
    dichromate crystallise out.
           Na_2Cr_2O_7 + 2KCI \rightarrow K_2Cr_2O_7 + 2NaCI
                                              (1 mark)
    Aryl halides are extremely less reactive towards
29.
    nucleophilic substitution reactions due to the
    following reasons:
       (i)
             Resonance effect:
               haloarenes, the electron pairs on
             In
             halogen atom are in conjugation with p-
                                                          3
             electrons of the ring and the resonating
             structures
                              possible. C-Cl
                         are
                                                 bond
             acquires a partial double bond character
             due to resonance. As a result, the bond
             cleavage in haloarene is difficult than
             haloalkane and therefore, they are less
```

	reactive towards nucleophilic
	substitution reaction.
(ii)	Difference in hybridisation of carbon
	atom in C-X bond:
	The sp ² hybridised carbon with a
	greater s-character is more
	electronegative and can hold the
	electron pair of C-X bond more tightly
	than sp ³ -hybridised carbon in haloalkane
	with less s-character. Thus, C-CI bond
	length is shorter in haloarene. Since it
	is difficult to break a shorter bond than
	a longer bond, therefore, haloarenes are
	less reactive towards nucleophilic
	substitution reaction.
(iii)	Instability of phenyl cation:
	In case of haloarenes, the phenyl cation
	formed as a result of self-ionisation will
	not be stabilised by resonance and
	therefore, $S_N 1$ mechanism is ruled out.
(iv)	Because of the possible <u>repulsion</u> , it is
	less likely for the electron rich
	nucleophile to approach electron rich
	arenes.
	(any three, 1 mark each)
 <u> </u>	· · · /

Code: A

In an amide ion, the negative charge is on the N-atom whereas in alkoxide ion, the negative charge is on the O-atom. Since O is more electronegative than N, O can accommodate the negative charge more easily than N. As a result, the amide ion is less stable than the alkoxide ion. Hence, amines are less acidic than alcohols of comparable molecular masses. (1 mark) ii) Intermolecular hydrogen bonding is present primary amines but not tertiary in in amines (H-atom absent in amino group) so primary amines have higher boiling point than tertiary amines. (1 mark) iii) In aromatic amines, the $-NH_2$ group is attached to a $-C_6H_5$ group, which is an electron withdrawing group. So, the availability of a lone pair of electrons on N is decreased. Therefore, aliphatic amines are more basic than aromatic amines.

	(1 mark)	
31.	i) Phenol	
	(1mark)	
	ii) 8	
	(1 mark)	
	Or	
	Salicylic Acid	4
	(1 mark)	
	iii) Reimer-Tiemann reaction	
	(1 mark)	
	iv) Aspirin possesses analgesic, anti-inflammatory	
	and antipyretic properties.	
	(any one, 1 mark)	
32.	i) Amino acids have amino (-NH ₂) group, basic in	
	nature and accepts a proton and COOH group loses	
	a proton forming a dipolar ion, called the Zwitter ion.	
	In this form, amino acids behave both as acids and	
	bases, so they are amphoteric in nature.	
	(1 mark)	
	ii) Peptide bond	
	(1 mark)	
	iii) If more than ten α -amino acids are joined together	
	by peptide bond the structure thus formed is called	
	Polypeptides.	
	(1 mark)	
	(1 IIIaik)	

iv) Glycine/ Alanine/ Glutamic acid/ Aspartic acid/ Glutamine/ Asparagine/ Serine/ Cysteine/ Tyrosine/ Proline (Any one, 1 mark) Or 20 (1 mark) Nernst equation: 33. $E_{cell} = E_{cell}^{o} - \frac{0.0591}{n} \log \frac{Mg^{2+}}{Cu^{2+}}$ (1 mark) Calculation of E_{cell}: $E_{cell} = 2.70 - \frac{0.0591}{2} \log \frac{0.001}{0.0001}$ $(\frac{1}{2} \text{ mark})$ $E_{cell} = 2.70 - \frac{0.0591}{2} log10$ $(\frac{1}{2} \text{ mark})$ 5 $E_{cell} = 2.67 V$ (1/2 mark for answer, 1/2 mark for unit) Calculation of $\Delta_r G^o$: $\Delta_r G^\circ = -nFE^\circ_{cell}$ $(\frac{1}{2} \text{ mark})$ $\Delta_r G^{\circ} = -2 \times 96500 \times 2.70$ $(\frac{1}{2} \text{ mark})$ $\Delta_r G^{\circ} = -521100 \, Jmol^{-1} = -521.1 \, k Jmol^{-1}$ (1/2 mark for answer, 1/2 mark for unit) Or

Chemistry

14

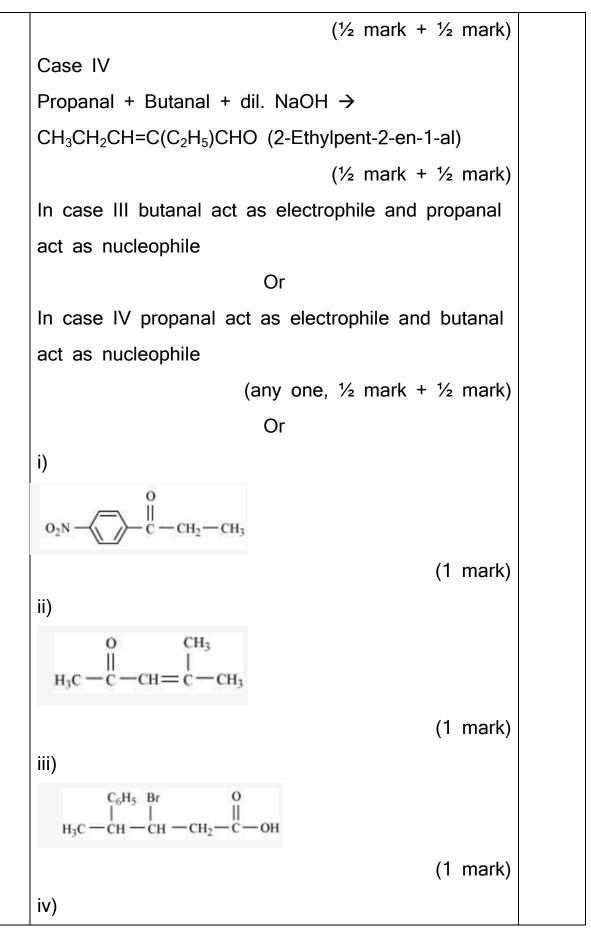
Given $\kappa = 7.896 \times 10^{-5} \text{ S cm}^{-1}$ c = 0.00241 M Λ_m^0 = 390.5 S cm² mol⁻¹ Molar conductivity $\Lambda_m = \frac{\kappa \times 1000}{c}$ $(\frac{1}{2} \text{ mark})$ $\Lambda_m = \frac{7.896 \times 10^{-5} \times 1000}{0.00241}$ $(\frac{1}{2} \text{ mark})$ $\Lambda_m = 32.76 \,\mathrm{S} \, cm^2 \, mol^{-1}$ (1/2 mark for answer, 1/2 mark for unit) Degree of dissociation; $\alpha = \frac{\Lambda_m}{\Lambda_m}$ $(\frac{1}{2} \text{ mark})$ $\alpha = \frac{32.76}{390.5} = 0.084$ $(\frac{1}{2} \text{ mark})$ Dissociation constant; $K_a = \frac{c\alpha^2}{1-\alpha}$ (1/2 mark) $K_a = \frac{0.00241 \times (0.084)^2}{1 - 0.084}$ (1/2 mark) $K_a = 1.86 \times 10^{-5}$ (1 mark) 34. i) 3 (1 mark) 5 ii) 3 (1 mark)

Chemistry

Code: A

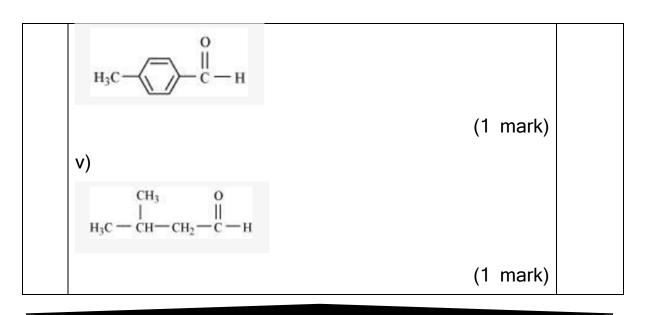
Download from www.MsEducationTv.com

15


iii) 2	
(1 mark)	
iv) 3	
(1 mark)	
v) 3	
(1 mark)	
Or	
Ni is in the +2 oxidation state i.e., in d ⁸ configuration.	
d^{8} configuration : $\boxed{11}$ 11	
(½ mark)	
There are 4 CN ^{$-$} or Cl ^{$-$} ions. Thus, it can either have	
a tetrahedral geometry or square planar geometry.	
(1 mark)	
Since CN ⁻ ion is a strong field ligand, it causes the	
pairing of unpaired 3 <i>d</i> electrons.	
(½ mark)	
$3d \qquad 4s \qquad 4p \qquad 4d$ dsp^2	
(½ mark)	
It now undergoes dsp ² hybridization.	
(½ mark)	

Since all electrons are paired, it is diamagnetic. $(\frac{1}{2} \text{ mark})$ In case of $[NiCl_4]^{2-}$, Cl^- ion is a weak field ligand. Therefore, it does not lead to the pairing of unpaired 3*d* electrons. $(\frac{1}{2} \text{ mark})$ Therefore, it undergoes sp^3 hybridization. | † ↓ | † ↓ | † ↓ 4d3d 4s4psp3 $(\frac{1}{2} \text{ mark})$ Since there are 2 unpaired electrons in this case, it is paramagnetic in nature. $(\frac{1}{2} \text{ mark})$ 35. Case I Propanal + Propanal + dil. NaOH → $CH_3CH_2CH=C(CH_3)CHO$ (2-Methylpent-2-en-1-al) $(\frac{1}{2} \text{ mark} + \frac{1}{2} \text{ mark})$ Case II 5 Butanal + Butanal + dil. NaOH → $CH_3CH_2CH_2CH=C(C_2H_5)CHO$ (2-Ethylhex-2-en-1-al) $(\frac{1}{2} \text{ mark} + \frac{1}{2} \text{ mark})$ Case III Butanal + Propanal + dil. NaOH → $CH_3CH_2CH_2CH=C(CH_3)CHO$ (2-Methylhex-2-en-1-al)

Chemistry


17

Code: A

18

Code: A

Code: A