GeneralInstructions:
(1) There are 35questionsinall. All questionsarecompulsory
(2) This question paper has five sections: SectionA, SectionB, SectionC, SectionD andSectionE. AlltheseSectionsarecompulsory.
(3) Section AcontainseighteenMCQof1 markeach,SectionBcontainssevenquestions oftwomarkseach,SectionC containsfivequestionsofthreemarks each,section D contains three long questions of five marks each and Section E contains twocasestudybasedquestionsof4markseach.
(4) There is no overall choice. However, an internal choice has been provided in sectionB,C,DandE. Youhavetoattemptonly oneof thechoicesin such questions.
5.Useof calculatorsisnotallowed.

SECTION A

Que. NO.		Marks
1.	A ball is released from the top of a tower of height h metres. It takes T seconds to reach the ground. What is the position of the ball in $\mathrm{T} / 3$ seconds? (i) $\mathrm{h} / 9$ metres from the ground (ii) $7 \mathrm{~h} / 9$ metres from the ground (iii) $8 \mathrm{~h} / 9$ metres from the ground (iv) $17 \mathrm{~h} / 18$ metres from the ground	1
2.	A body is moving in a circular path and completes one revolution is 4 s What is the displacement of the body? (i) Non-Zero (ii) Zero (iii) Incomplete Statement (iv) None of these	1

		Marks
3.	Horizontal range is maximum when angle of projection with horizontal is (i) 0 Degree (ii) 45 Degree (iii) 60 Degree (iv) 90 Degree	1
4.	Calculate the net force required to give an automobile of mass 1600 kg an acceleration of $4.5 \mathrm{~m} / \mathrm{s}^{2}$. (i) 720 Newton (ii) 3600 Newton (iii) 7200 Newton (iv) 360 Newton	1
5.	Friction is an (i) opposing force (ii) Conservative force (iii) Centripetal force (iv) Push and pull force	1
6.	Which is not the unit of work (i) joule (ii) electron volt (iii) erg (iv) pascal	1
7.	Value of coefficient of restitution for perfectly inelastic body is (i) 0 (ii) 1 (iii) >1 (iv) <1	1

8.	F is The Gravitational Force Between Two Blocks. What is the new force If the Mass of Both the Blocks as Well as Distance Between Them Is Doubled? (i) F (ii) 2 F (iii) $3 F$ (iv) 4 F	1
9.	Identify the position of sun in the following diagram if the linear speed of the planet is greater at C than at D . (i) A (ii) B (iii) C (iv) D	1
10.	Value of acceleration due to gravity at centre of earth is (i) $9.8 \mathrm{~m} / \mathrm{s}^{2}$ (ii) $-9.8 \mathrm{~m} / \mathrm{s}^{2}$ (iii) zero (iv) greater than $9.8 \mathrm{~m} / \mathrm{s}^{2}$	1
11.	spherical ball contracts in volume by 0.1% when subjected to a uniform normal pressure of 100 atmosphere. the bulk modulus of material of the ball is (i) $10^{10} \mathrm{~N} / \mathrm{m}^{2}$ (ii) $10^{9} \mathrm{~N} / \mathrm{m}^{2}$ (iii) $10^{8} \mathrm{~N} / \mathrm{m}^{2}$ (iv) $10^{7} \mathrm{~N} / \mathrm{m}^{2}$	1
12.	Stress is directly proportional to strain. This is (i) Newton law (ii) Pascal law (iii) hooke law (iv) joules law	1

SECTION E

31.	SECTION D Derive expression for Maximum height, Horizontal range, time of flight. When object is projected making angle θ with horizontal. OR	
State law of parallelogram Vector addition and prove expression of resultant.	5	
32.	State Newton second law of motion The driver of a three wheeler moving with a speed of 36 km h-1 sees a child standing in the middle of the road and brings his vehicle to rest 4.0 s just in time to save the child. What is the average retarding force on the vehicle? The mass of the three wheeler is 400 kg and the mass of the driver is 65 kg A man of mass 70 kg stands on a weighing scale in a lift which is moving: (a) upwards with a uniform speed of 10 ms-1. (b) downwards with uniform acceleration of 5 ms-2. (c) upwards with a uniform acceleration of 5 ms-2. What would be readings on the scale in each case?	5
33	State and prove Bernoulli s theorem? Write its two limitation also OR What is terminal velocity? Dervive expression for it?	5
		4

CASE STUDY

When we speak, the sound moves outward from us, without any flow of air from one part of the medium to another. The disturbances produced in air are much less obvious and only our ears or a microphone can detect them. These patterns, which move without the actual physical transfer or flow of matter as a whole, are called waves. The most familiar type of waves such as waves on a string, water waves, sound waves, seismic waves, etc. is the so-called mechanical waves. These waves require a medium for propagation, they cannot propagate through vacuum. They involve oscillations of constituent particles and depend on the elastic properties of the medium. The electromagnetic waves that you will learn in Class XII are a different type of wave. Electromagnetic waves do not necessarily require a medium - they can travel through vacuum. Light, radio waves, X-rays, are all electromagnetic waves. We have seen that motion of mechanical waves involves oscillations of constituents of the medium. If the constituents of the medium oscillate perpendicular to the direction of wave propagation, we call the wave a transverse wave. If they oscillate along the direction of wave propagation, we call the wave a longitudinal wave. In transverse waves, the particle motion is normal to the direction of propagation of the wave

1) Air can sustain
a) Transverse waves
b) longitudinal waves
c) both a and b
d) none of these
2) The electromagnetic waves can pass through
a) Solids only
b) Fluids only
c) Any medium even through vacuum
d) None of these
3) Write difference between transverse and longitudinal waves

OR
Derive relation between wavelength, Frequency and speed.

