Class: XISESSION:2023-2024MARKING SCHEMEHBSE SAMPLEQUESTIONPAPER(THEORY)SUBJECT:PHYSICS		
Q.no		Marks
	SECTIONA	
1	(iii) $8 \mathrm{~h} / 9$	1
2	(ii) zero	1
3	(ii) 45	1
4	(iii) 7200 N	1
5	(i)Opposing force	1
6	(iv) pascal	1
7	(i) 0	1
8	(i)F	1
9	(ii) B	1
10	(iii) zero	1
11	(iv) $10^{7} \mathrm{Nm}^{-2}$	1
12	(iii) Hook's law	1
13	(iv) 8 Q	1
14	(i) J / kg	1
15	(a)	1
16	(d)	1
17	(d)	1
18	(b)	1
	SECTIONB	
19	$\begin{aligned} & P=\frac{a^{3} b^{2}}{(\sqrt{c} d)} \\ & \frac{\Delta P}{P}=\frac{3 \Delta a}{a}+\frac{2 \Delta b}{b}+\frac{1}{2} \frac{\Delta c}{c}+\frac{\Delta d}{d} \\ & \left(\frac{\Delta P}{P} \times 100\right) \%=\left(3 \times \frac{\Delta a}{a} \times 100+2 \times \frac{\Delta b}{b} \times 100+\frac{1}{2} \times \frac{\Delta c}{c} \times 100+\frac{\Delta d}{d} \times 100\right) \% \\ & =3 \times 1+2 \times 3+1 / 2 \times 4+2 \\ & =3+6+2+2 \\ & =13 \% \end{aligned}$ Percentage error in $P=13 \%$	$\begin{gathered} 1 / 2 \\ 1 / 2 \\ 1 / 2 \\ 1 / 2 \end{gathered}$

20	$\frac{\text { Given unit }}{\text { New unit }}=\left(\frac{\mathrm{M}_{1}}{\mathrm{M}_{2}}\right)^{2}\left(\frac{\mathrm{~L}_{1}}{\mathrm{~L}_{2}}\right)^{2}\left(\frac{\mathrm{~T}_{1}}{\mathrm{~T}_{2}}\right)^{2}$ Dimension formula of heat $=\left[\mathrm{M}^{1} \mathrm{~L}^{2} \mathrm{~T}^{-2}\right]$ $\therefore \mathrm{x}=1, \mathrm{y}=2, \mathrm{z}=2$ Since $\mathrm{M}_{1}=1 \mathrm{~kg}, \mathrm{~L}_{1}=1 \mathrm{~m}, \mathrm{~T}_{1}=1 \mathrm{~s}$ and $\mathrm{M}_{2}=\alpha \mathrm{kg}, \mathrm{L}_{2}=\beta \mathrm{m}, \mathrm{T}_{2}=\gamma \mathrm{s}$ As 1 calorie $=4.2$ Joule and 1 Joule $=1 \mathrm{~kg} \mathrm{~m}^{2} \mathrm{~s}^{-2}$ $\begin{aligned} & \Rightarrow \frac{\text { calorie }}{\text { New unit }}=4.2\left(\frac{1 \mathrm{~kg}}{\alpha \mathrm{~kg}}\right)^{1}\left(\frac{1 \mathrm{~m}}{\beta \mathrm{~m}}\right)^{2}\left(\frac{1 \mathrm{~s}}{\gamma \mathrm{~s}}\right)^{-2} \\ & \therefore \text { Calorie }=4.2 \alpha^{-1} \beta^{-2} \gamma^{2} \text { New unit } \end{aligned}$	$\left.\right\|^{1 / 2}$
21	A conservative force exists when the work done by that force on an object is independent of the object's path. Instead, the work done by a conservative force depends only on the end points of the motion. An example of a conservative force is gravitational force, electrostatic force. Or Elastic potential energy is energy stored as a result of applying a force to deform an elastic object. Elastic potential energy $=231 / 21 / 2 \mathrm{kx}^{2}$	1

22	A collision in which there is absolutely no loss Of kinetic energy is called elastic collision. Characteristics: (any two) 1. The linear momentum is conserved. 2. Total energy of the system is conserved. 3. Kinetic energy is conserved. 4. Forces involved during elastic collisions must be conservative forces. OR	1
	The ratio of relative velocity after collision to the relative velocity between two objects before their collision is known as the	2
coefficient of restitution.	$1 / 2$	
$\mathbf{2 3}$	Pascal's law is any pressure applied to a fluid inside a closed system will transmit that pressure equally in all directions throughout the fluid. Hydraulic brake,Hydraulic jack	$1+1$
$\mathbf{2 4}$As temperature levels change, so does the air pressure in your tyres. It's the same as when you drive at higher speeds for an extended period: the tyre warms, and the air within expands and increases pressure	2	

25	Length of the steel wire, $1=12 \mathrm{~m}$ Mass of the steel wire, $\mathrm{m}=2.10 \mathrm{~kg}$ Velocity of the transverse wave, $\mathrm{v}=343 \mathrm{~m} / \mathrm{s}$ Mass per unit length, $\mu=\mathrm{m} / \mathrm{l}=2.10 / 12=0.175 \mathrm{~kg} \mathrm{~m}^{-1}$ For Tension T, velocity of the transverse wave can be obtained using the relation: $\begin{aligned} & \mathrm{v}=\sqrt{\frac{\mathrm{T}}{\mu}} \\ & \therefore \mathrm{~T}=\mathrm{v}^{2} \mu \\ & =(343)^{2} \times 0.175=20588.575 \simeq 2.06 \times 10^{4} \mathrm{~N} . \end{aligned}$	${ }_{1}^{1}$
	SECTIONC	
26	Let $A B=s$, time takemn to go form A to B, $t=\frac{s}{40} h$ and time taken to go form B to $A, t_{2}=\frac{s}{30} h$ \therefore total time taken $=$ $t_{1}+t_{2}=\frac{S}{40}+\frac{s}{30}=\frac{(3+4) s}{120}=\frac{7 s}{120} h$ Total distance travelled $=s+s=2 s$ $\therefore \text { "Average speed" }=\frac{\text { total distance travelled }}{\text { total time taken }}$ $=\frac{2 s}{7 s / 120}=\frac{120 \times 2}{7}=34.3 \mathrm{~km} / \mathrm{h}$	1 1 1
27	Consider a system of two particles of masses m_{1} and m_{2} located at A and B respectively. $\begin{aligned} & \overrightarrow{O A}=\vec{r}_{1} \\ & \text { and } \overrightarrow{O B}=\overrightarrow{r_{2}} \end{aligned}$ Let C be the position of centre of mass of the system of two particles. It would lie on the line joining A and B . Let $\overrightarrow{O C}=\vec{r}$ be the position vector of mass. To evaluate \vec{r}, suppose $\overrightarrow{v_{1}} \& \overrightarrow{v_{2}}$ be the velocities of particles m_{1} and m_{2} respectively at any instant t $\text { then, } v_{1}=\frac{d r_{1}}{d t}$ $\text { and } v_{2}=\frac{d r_{2}}{d t} \ldots \ldots(1)$ Let	

		1.5
28	The moment of inertia of a rigid composite system is the sum of the moments of inertia of its component subsystems (all taken about the same axis). We know, kinetic energy $(E)=\frac{1}{2} m v^{2}$ As $v=\omega r$ So $E=\frac{1}{2} m r^{2} \omega^{2} \Rightarrow E=\frac{1}{2} I \omega^{2} \quad\left[\therefore I=m r^{2}\right]$ which is required relationship between kinetic energy of rotation and moment of inertia	1

29	Orbital velocity (V_{0}) : Velocity of a satellite moving in orbit is called orbital velocity $\left(V_{0}\right)$. Let a satellite of mass is revolving round the eath in a circular orbit at a height ' h ' above the ground. Radius of the orbit $=R+h$ where R is radius of earth. In orbit motion is "The centrifigal and centripetal forces acting on the satellite". Centrifiugal force $=\frac{m V^{2}}{r}=\frac{m V_{0}^{2}}{R+h} \ldots \ldots . .(1)$ Centripetal force is the force acting towards the centre of the circle it is provided by gravitaional force between the planet and satellite. $\begin{aligned} & \therefore F=\frac{G M}{(R+h)^{2}} \quad \cdots \cdots \cdots \cdots(2) \\ & (1)=(2) \frac{m V_{0}^{2}}{(R+h)}=\frac{G M}{(R+h)^{2}} \\ & \therefore V_{0}^{2}=\frac{G M}{R+h} \text { or } V_{0}=\sqrt{\frac{G M}{R+h}} \end{aligned}$ When $h \ll R$ then orbital velocity. $V_{0}=\sqrt{g R}$ is called orbital velocity. Its value is $7.92 \mathrm{~km} / \mathrm{sec}$.	1 1 1
	OR Escape velocity is the minimum velocity required by a body to be projected to overcome the gravitational pull of the earth. Derivation of escape velocity	${ }^{1}$

\begin{tabular}{|c|c|c|}
\hline 30 \& An isothermal process is a thermodynamic process, in which the temperature of the system remains constant:

```
\(\Delta \mathrm{T}=0\).
    Suppose 1 mole of gas is enclosed in isothermal container. Let \(\mathrm{P}_{1}, \mathrm{~V}_{1}, \mathrm{~T}\) be
    initial pressure, volumes and temperature. Let expand to volume \(\mathrm{V}_{2}\) \&
    pressure reduces to \(\mathrm{P}_{2}\) \& temperature remain constant. Then, work done is
    given by
    \(\mathrm{W}=\int \mathrm{dW}\)
    \(\mathrm{W}=\int_{\mathrm{V}_{1}}^{\mathrm{V}_{2}} \mathrm{PdV}\)
    as \(\mathrm{PV}=\mathrm{RT} \quad(\mathrm{n}=\) mole \()\)
    \(P=\frac{R T}{V}\)
    \(\mathrm{W}=\int_{\mathrm{V}_{1}}^{\mathrm{V}_{2}} \frac{\mathrm{RT}}{\mathrm{V}} \mathrm{dV}\)
    \(\mathrm{W}=\mathrm{RT} \int_{\mathrm{V}_{1}}^{\mathrm{V}_{2}} \frac{\mathrm{dV}}{\mathrm{V}}\)
        \(=\mathrm{RT}[\operatorname{InV}]_{\mathrm{V}_{1}}^{\mathrm{V}_{2}}\)
        \(=\mathrm{RT}\left[\operatorname{InV} \mathrm{V}_{2}-\mathrm{InV}_{1}\right]\)
    \(\mathrm{W}=\mathrm{RTIn} \frac{\mathrm{V}_{2}}{\mathrm{~V}_{1}}\)
    \(\mathrm{W}=2.303 \mathrm{RT} \log _{10} \frac{\mathrm{~V}_{2}}{\mathrm{~V}_{1}}\)
``` & 1


1
1

1
1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline & SECTION D & \\
\hline 31 & (i) Let H be the maximum height reached by the projectile in time \(t_{1}\) For
vertical motion,
The initial velocity \(=u \sin \theta\)
The final velocity \(=0\)
Acceleration \(=-\mathrm{g}\)
\(\therefore\) using, \(v^{2}=u^{2}+2 \mathrm{as}\)
\(0=\mathrm{u}^{2} \sin ^{2} \theta-2 \mathrm{gH}\)
\(2 \mathrm{gH}=\mathrm{u}^{2} \sin ^{2} \theta\)
\(\mathrm{H}=\frac{u^{2} \sin ^{2} \theta}{2 \mathrm{~g}}\)
(ii) Let t, be the time taken by the projectile to reach the maximum height H.
For vertical motion,
initial velocity \(=u \sin \theta\)
Final velocity at the maximum height \(=0\)
Acceleration \(a=-g\)
Using the equation \(v=u+a t_{1}\)
\(0=u \sin \theta-g t_{1}\)
\(g t_{1}=u \sin \theta\)
\(t_{1}=\frac{u \sin \theta}{g}\) & 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline & \begin{tabular}{l}
Let \(t_{2}\) be the time of descent. \\
But \(\mathrm{t}_{1}=\mathrm{t}_{2}\) \\
i.e. time of ascent= time of descent. \\
\(\therefore\) Time of flight \(\mathrm{T}=\mathrm{t}_{1}+\mathrm{t}_{2}=2 \mathrm{t}_{1}\)
\[
\therefore \mathrm{T}=\frac{2 \mathrm{u} \sin \theta}{\mathrm{~g}}
\] \\
(iii) Let R be the range of the projectile in a time \(T\). This is covered by the projectile with a constant velocity \(u \cos \theta\). \\
Range=horizontal component of \\
velocity \(\times\) Time of flight \\
i.e, \(R=u \cos \theta . T\) \\
\(\mathrm{R}=\mathrm{u} \cos \theta \cdot \frac{2 \mathrm{u} \sin \theta}{\mathrm{g}}\)
\[
\begin{aligned}
& R=\frac{u^{2} \sin 2 \theta}{g} \\
& \because 2 \sin \theta \cdot \cos \theta=\sin 2 \theta
\end{aligned}
\]
\end{tabular} \\
\hline & \begin{tabular}{l}
OR \\
The parallelogram law of vector addition states that if two vectors are considered to be the two adjacent sides of a parallelogram with their tails meeting at the common point, then the diagonal of the parallelogram originating from the common point will be the resultant vector. \\
Derivation for resultant
\end{tabular} \\
\hline 32 & Newton's second law of motion states that "Force is equal to the rate of change of momentum. For a constant mass, force equals mass times acceleration. \\
\hline
\end{tabular}

Initial speed of the three-wheeler, \(\mathrm{u}=36 \mathrm{~km} / \mathrm{h}=10 \mathrm{~m} / \mathrm{s}\)
Final speed of the three-wheeler, \(\mathrm{v}=0 \mathrm{~m} / \mathrm{s}\)
Time, \(\mathrm{t}=4 \mathrm{~s}\)
Mass of the three-wheeler, \(\mathrm{m}=400 \mathrm{~kg}\)
Mass of the driver, \(\mathrm{m}^{\prime}=65 \mathrm{~kg}\)
Total mass of the system, \(\mathrm{M}=400+65=465 \mathrm{~kg}\)
Using the first law of motion, the acceleration (a) of the three-wheeler can calculated as:
\(\mathrm{v}=\mathrm{u}+\mathrm{at}\)
\(\mathrm{a}=\frac{(\mathrm{v}-\mathrm{u})}{\mathrm{t}}=\frac{(0-10)}{4}=-2.5 \mathrm{~m} / \mathrm{s}^{2}\)
The negative sign indicates that the velocity of the three-wheeler is decrea with time.

Using Newton's second law of motion, the net force acting on the threewheeler can be calculated as:
\(\mathrm{F}=\mathrm{Ma}=465 \times(-2.5)=-1162.5 \mathrm{~N}\)
The negative sign indicates that the force is acting against the direction of motion of the three-wheeler.

\section*{OR}
(i) Mass of the man, \(m=70 \mathrm{~kg}\)

Acceleration, \(\mathrm{a}=0\)
Using Newton's second law of motion, we can write the equation of motion as:
\(\mathrm{R}-\mathrm{mg}=\mathrm{ma}\)
Where, ma is the net force acting on the man.
As the lift is moving at a uniform speed, acceleration \(a=0\)
\(\therefore \mathrm{R}=\mathrm{mg}\)
\(=70 \times 10=700 \mathrm{~N}\)
\(\therefore\) Reading on the weighing scale \(=\frac{700}{g}=\frac{700}{10}=70 \mathrm{~kg}\)

\begin{tabular}{|l|c|}
\begin{tabular}{l}
Bernoulli's equation LIMITATION (ANY TWO) \\
[1] the flow must be steady, i.e., the flow parameters (velocity, \\
density, etc...) at any point cannot change with time [2] the flow \\
must be incompressible - even though pressure varies, the density \\
must remain constant along with a streamline and [3] friction by \\
viscous forces must be negligible. \\
OR
\end{tabular} & \begin{tabular}{|c|c|}
\\
Terminal velocity is defined as the highest velocity attained by an \\
object falling through a fluid \\
Derivation for terminal velocity
\end{tabular} \\
1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 34 & \begin{tabular}{l}
1. \(1.38 \times 10^{-23}\) joule per Kelvin. \\
2. \(P=1 / 3 p v^{2}\) \\
3. The law of energy equipartition states that the total energy for every dynamic system in thermal equilibrium is evenly shared among the degrees of freedom. Or \\
Degree of Freedom
\end{tabular} & 1
1
2 \\
\hline 35 & \begin{tabular}{l}
1. b) longitudinal waves \\
2. c) Any medium even through vacuum \\
3. a longitudinal wave, the medium or the channel moves in the same direction with respect to the wave. Here, the movement of the particles is from left to right and forces other particles to vibrate. In a transverse wave the medium or the channel moves perpendicular to the direction of the wave. \\
OR \\
Proof of \(V=v \lambda\)
\end{tabular} & 1
1
2 \\
\hline
\end{tabular}```

