Marking Scheme

Chemistry Sample Paper (2023-24)
Class: $11^{\text {th }}$

1. (a) 2
2. (b) 6 unpaired e^{-}
3. (c) $\mathrm{F}\langle\mathrm{Cl}>\mathrm{Br}>\mathrm{I}$
4. (d) $\mathrm{O}_{2}{ }^{2-}$
5. (b) $18 \mathrm{gm} / \mathrm{mol}$
6. (c) $\mathrm{q}=0$
7. (a) +2
8. (a) electron deficient species
9. (c) $<\Delta U^{\circ}$
10.(c)

$$
\begin{equation*}
\text { 11.(a) } 0 \tag{1}
\end{equation*}
$$

12.(a) planar
13.(b) 6.022×10^{21} molecules
14.(a) 1
15.(d) Assertion(A) is false but Reason(R) is true.
16.(a) Assertion(A) and Reason(R) are correct and (R) is correct explanation of Assertion(A)
17.(a) Assertion(A) and Reason(R) are correct and (R) is the correct explanation of Assertion(A)
18.(d) Assertion(A) is wrong statement Reason(R) is correct statement.

SECTION-B

19.(a) $n=5$
(b) $16 \mathrm{e}^{-}$
20.(a) as the volume increases, pressure decreases so equilibrium move in forward direction where number of moles increases.
(b) $\mathrm{K}_{\mathrm{C}}($ Reverse $)=\frac{1}{8.3 \times 15^{-3}}=120.48$
$21.16 \mathrm{H}^{+}+\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+6 \mathrm{e}^{-} \longrightarrow 2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O}$
$\left[\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}+2 \mathrm{e}^{-}+2 \mathrm{H}^{+}\right] 3$
$\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+16 \mathrm{H}^{+}+3 \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}+3 \mathrm{H}_{2} \mathrm{O} \longrightarrow 2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O}+3 \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}+6 \mathrm{H}^{+}$
$\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+3 \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}+10 \mathrm{H}^{+} \longrightarrow 2 \mathrm{Cr}^{3+}+3 \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}+4 \mathrm{H}_{2} \mathrm{O}$
22.

23. Buffer solution is the solution which resist change in the pH value of solution when small amount of acid or base is added to it.

Buffer solutions are of two types
(a) Acidic buffer:- It contains equimolar quantities of weak acid and its salt with strong base.

Example acetic acid and sodium acetate
(b) Basic Buffer:- It contains equimolar quantities of weak base and its salt with strong acid

Example ammonium hydroxide and ammonium chloride
24.

Mechanism

(i) Generation of Electrophile

$$
\mathrm{CH}_{3} \mathrm{COCl}+\mathrm{AlCl}_{3} \rightarrow \mathrm{CH}_{3} \mathrm{CO}^{\oplus}+\mathrm{AlCl}_{4}^{\ominus}
$$

(ii) Attack of electrophile to form intermediate carbocation.

(iii) Loss of proton from carbocation

Newman's Representation

Staggerred
Eclipsed
Staggerred Conformation is more stable due to less repulsions.
25.(a) $\mathrm{S}<\mathrm{P}<\mathrm{O}<\mathrm{N}$
(b) $\mathrm{P}<\mathrm{S}<\mathrm{N}<\mathrm{O}$

OR
(a) $3 s^{2} 3 p^{4}$

Group $\longrightarrow 16^{\text {th }}$ group
Block \longrightarrow p-block
Period $\longrightarrow 3^{\text {rd }}$ period
(b) $4 \mathrm{~s}^{2} \quad 3 \mathrm{~d}^{2}$

Group $\longrightarrow 4^{\text {th }}$ group
Block \longrightarrow d-block
Period $\longrightarrow 4^{\text {th }}$ period

SECTION-C

26.(a) 1 mole $\mathrm{C}_{2} \mathrm{H}_{6}$ contains 2 moles of carbon, 3 mole $\mathrm{C}_{2} \mathrm{H}_{6}$ contains $3 \times 2=6$ moles carbon.
(b) 1 mole $\mathrm{C}_{2} \mathrm{H}_{6}$ contains 6 mole hydrogen, 3 mole $\mathrm{C}_{2} \mathrm{H}_{6}$ contains $6 \times 3=18$ mole hydrogen.
(c) 1 mole $\mathrm{C}_{2} \mathrm{H}_{6}=6.022 \times 10^{23}$ molecules

3 mole $\mathrm{C}_{2} \mathrm{H}_{6}=3 \times 6.022 \times 10^{23}$ molecules
$=18.066 \times 10^{23}$ molecules
27. (a) C non metal
(a) A alkali metal
(b) $\quad \mathrm{B}$ alkaline earth metal
28. $\Delta \mathrm{G}=\Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{S}$
$=40.63 \times 1000-300 \times 108.8$
$=7990 \mathrm{~J} / \mathrm{mol}$
$\Delta \mathrm{G}=+\mathrm{ve} \therefore$ reaction is not feasible
OR

$$
\begin{align*}
\mathrm{SO}_{2}(\mathrm{~g}) & +\frac{1}{2} \mathrm{O}_{2} \rightarrow \mathrm{SO}_{3}(\mathrm{~g}) \\
\Delta \mathrm{H} & =\Sigma \Delta_{\mathrm{f}} \mathrm{H}^{\circ} \text { products }-\Sigma \Delta_{\mathrm{f}} \mathrm{H}^{\circ} \text { reactants } \tag{1}\\
= & \Delta_{\mathrm{f}} \mathrm{H}^{\circ} \mathrm{SO}_{3}-\Delta_{\mathrm{f}} \mathrm{H}^{\circ} \mathrm{SO}_{2} \\
= & -395.6-(-296.6) \tag{1}\\
= & -395.6+296.6 \\
= & -99 \mathrm{KJ} \tag{1}
\end{align*}
$$

29.(a) $\mathrm{AgCl} \equiv \mathrm{Cl}$
$108+35.5 \quad 35.5$
$143.5 \quad 35.5$
\% of $\mathrm{Cl}=\frac{35.5}{143.5} \times \frac{\text { Amt.of AgCl formed }}{\text { Wt.of Organic Compound }} \times 100$
$\%$ of $\mathrm{Cl} \quad=\frac{35.5}{143.5} \times \frac{0.5740}{0.3780} \times 100$
$=37.57 \%$
(b) Paper chromatography is a type of partition chromatography which is based upon the differences in the tendencies of substance to distribute between two phases.

OR
(c) The process of displacement of σ electrons along the saturated carbon chain due to the presence of a polar covalent bond at one end of the chain is called inductive effect (I effect). It is of two types.
(i) $\quad+$ I effect \rightarrow substituent has less e^{-}attracting power than H .
(ii) - I effect \rightarrow substituent has more e^{-}attracting power than H .

+ I effect example $-\mathrm{CH}_{3},-\mathrm{C}_{2} \mathrm{H}_{5}$
- I effect example $-\mathrm{NO}_{2},-\mathrm{CN},-\mathrm{X}$

Electromeric effect is the complete transfer of shared pair of $\pi \mathrm{e}^{-}$to one of the atom joined by multiple bond. It is of two types
(i) + E effect
(ii) - E effect
(i) $\quad+\mathrm{E}$ effect is when $\pi \mathrm{e}^{-s}$ are transferred to atom to which attacking reagent get attached example

(ii) - E effect is when π bond e^{-}all transferred to atom other than the one to which reagent get attached.

Example

30.(a) $\mathrm{NaOH} \rightarrow \mathrm{Na}^{+}+\mathrm{OH}^{-}$
$0.01 \mathrm{M} \quad 0.01 \mathrm{M}$
$\mathrm{K}_{\mathrm{W}}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]=10^{-14}$
$\left[\mathrm{H}^{+}\right]=\frac{10^{-14}}{0,01} \times 100=10^{-12}$
$\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]$

$$
\begin{align*}
& =-\log 10^{-12} \\
& =12 \tag{1}
\end{align*}
$$

(b) $\mathrm{SO}_{4}{ }^{2-}$
31.(a) $\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightarrow 2 \mathrm{NH}_{3}$
$\Delta \mathrm{ng}=2-4=-2$
$\Delta \mathrm{H}=\Delta \mathrm{U}+\Delta \mathrm{ng} \mathrm{RT}$
$=-87.425 \times 1000+(-2) \times 8.314 \times 298$
$=-87425-4955.14$
$=-77514.7 \mathrm{~J}$

OR

(a) $\Delta \mathrm{H}=\Delta \mathrm{U}$ when $\Delta \mathrm{ng}=0$
eg. $\mathrm{H}_{2}+\mathrm{I}_{2} \rightarrow 2 \mathrm{HI}$

$$
\Delta \mathrm{ng}=2-2=0
$$

$\therefore \Delta \mathrm{H}=\Delta \mathrm{U}+0 \mathrm{RT}$
$\therefore \Delta \mathrm{H}=\Delta \mathrm{U}$
$\Delta \mathrm{H}=\Delta \mathrm{U}+\mathrm{P} \Delta \mathrm{V}$
when $\Delta V=0$ then $\Delta H=\Delta U$
OR
any other relevant example.
(b) (i) $\quad \Delta \mathrm{ng}=1-3=-2 \quad \Delta \mathrm{H}=\Delta \mathrm{U}-2 \mathrm{RT} \quad \Delta \mathrm{H}<\Delta \mathrm{U}$
(ii) $\Delta \mathrm{ng}=1-1=0 \quad \Delta \mathrm{H}=\Delta \mathrm{U}+\mathrm{O}$
(iii) $\Delta \mathrm{ng}=1-0=1 \quad \Delta \mathrm{H}=\Delta \mathrm{U}+\mathrm{RT}$
$\Delta \mathrm{H}>\Delta \mathrm{U}$
$\Delta \mathrm{H}<\Delta \mathrm{U}$ in (i)
$\Delta \mathrm{H}>\Delta \mathrm{U}$ in (iii)
32.(a)

3-keto-2-methylhex - 4 -en - 1 - al
(b) pent - 3-en - - - yne

$$
\mathrm{HC} \cong \mathrm{C}-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{3}
$$

(c) (i)
 Methonic acid
(ii)
 Ethanoic acid
(iii)

(iii) $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{C}-\mathrm{OH}$ Propanoic acid
(iv)
 OR
(i)
 Butanoic acid

3-methyl pentane nitrile

3-Bromobutan-2-o1
SECTION-E

$$
\text { 33.(a) } \begin{align*}
\Delta \mathrm{V} & =45 \times \frac{2}{100}=0.9 \tag{1}\\
\mathrm{~m} & =\frac{40}{1000}
\end{align*}
$$

$$
\begin{align*}
\Delta \mathrm{x}= & \frac{\mathrm{h}}{4 \pi \mathrm{~m} \Delta \mathrm{v}} \tag{1}\\
& =\frac{6.626 \times 10^{-34}}{4 \times 3.14 \times 40 \times 10^{-3} \times 0.9} \\
& =1.46 \times 10^{-33} \mathrm{~m} \tag{1}
\end{align*}
$$

(b)

Orbit
Orbital
(a) It I well defined It is region in space circular path around nucleus around which where the probability e^{-}revolve to find e^{-}is maximum
(b) Represent planar three dimensional motion of electron motion

OR / any other relevant difference.
OR
(a) $\frac{\lambda_{\mathrm{A}}}{\lambda \mathrm{B}}=\frac{\mathrm{h}}{\mathrm{PA}_{\mathrm{A}}} \frac{\mathrm{P}_{\mathrm{B}}}{\mathrm{h}}=\frac{\mathrm{P}_{B}}{\mathrm{PA}_{\mathrm{A}}}$
$\mathrm{P}_{\mathrm{B}}=\frac{\mathrm{P}_{\mathrm{A}}}{2}$
$\frac{\lambda_{\mathrm{A}}}{\lambda_{B}}=\frac{\mathrm{PA}_{\mathrm{A}}}{2 \cdot \mathrm{PA}}=\frac{1}{2}$
$\frac{5 \times 10^{-8}}{\lambda B}=\frac{1}{2} \therefore \lambda B=10 \times 10^{-8} \mathrm{~m}$
$=10^{-7} \mathrm{~m}$
(b) Emission Spectrum
(i) It is obtained when radiation emitted by the excited substance are analysed with spectroscope
(ii) Emission spectrum consist of bright coloured lines separated by dark spaces.
34. (a) P (Ground State) $1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{6} 3 \mathrm{~s}^{2} 3 \mathrm{px}^{1} 3 \mathrm{py}^{1} 3 \mathrm{pz}{ }^{1}$
$\mathrm{P}($ Excited State $) \mathrm{ls}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{6} 3 \mathrm{px}^{1} 3 \mathrm{py}^{1} 3 \mathrm{pz}^{1} 3 \mathrm{dz}^{2^{1}}$

5 orbital hybridise and form 5 new orbitals of same energy and same shape.

5 sp3d hybrid orbitals adopt trigonal bipyramidal arrangement which overlap with 3 pz orbital to form 5σ bonds

Axial bonds are longer than equatorial bonds due to greater repulsions from other bonds in axial position.
(b) BeH_{2} is linear molecule. Therefore the resultant dipole moment of two $\mathrm{Be}-\mathrm{H}$ bonds get cancelled giving zero dipole moment.

OR
(a) $\mathrm{O}_{2}=\sigma \mathrm{s}^{2} \sigma^{*} \mathrm{ls}^{2} \sigma 2 \mathrm{~s}^{2} \sigma^{*} 2 \mathrm{~s}^{2} \sigma 2 \mathrm{pz}^{2} \pi 2 \mathrm{px}^{2}=\pi 2 \mathrm{py}^{2} \pi^{*} 2 \mathrm{px}^{1}=\pi * 2 \mathrm{py}^{1}$
$\mathrm{O}^{+}{ }_{2}=\sigma \mathrm{s}^{2} \sigma^{*} \mathrm{ls}^{2} \sigma 2 \mathrm{~s}^{2} \sigma^{*} 2 \mathrm{~s}^{2} \sigma 2 \mathrm{pz}^{2} \pi 2 \mathrm{px}^{2}=\pi 2 \mathrm{py}^{2} \pi^{*} 2 \mathrm{px}^{1}=\pi^{*} 2 \mathrm{py}^{0}$
$\mathrm{O}_{2}^{-}=\sigma \mathrm{s}^{2} \sigma^{*} \mathrm{ls}^{2} \sigma 2 \mathrm{~s}^{2} \sigma^{*} 2 \mathrm{~s}^{2} \sigma 2 \mathrm{pz}^{2} \pi 2 \mathrm{px}^{2}=\pi 2 \mathrm{py}^{2} \pi^{*} 2 \mathrm{px}^{2}=\pi^{*} 2 \mathrm{py}^{1}$
Bond order $\mathrm{O}_{2}=\frac{8-4}{2}=\frac{4}{2}=2$

$$
\begin{align*}
& \mathrm{O}_{2}^{+}=\frac{8-3}{2}=\frac{5}{2}=2.5 \\
& \mathrm{O}_{2}^{-}=\frac{8-5}{2}=\frac{3}{2}=1.5 \tag{1}
\end{align*}
$$

Higher is the bond order, more is the stability.

$$
\begin{equation*}
\mathrm{O}_{2}^{+}>\mathrm{O}_{2}>\mathrm{O}_{2}^{-} \tag{1}
\end{equation*}
$$

(b) CO_{2} has zero dipole moment so CO_{2} is linear as two $\mathrm{C}=\mathrm{O}$ bond moments get cancelled where as $\mathrm{H}_{2} \mathrm{O}$ molecule has resultant dipole moment. Two O-H bonds are arranged in angular shape and the bond moment of two $\mathrm{O}-\mathrm{H}$ bonds give resultant dipole moment.
35.(a)
(i)

(ii) $2 \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Cl}+\mathrm{Hg}_{2} \mathrm{~F}_{2} \longrightarrow 2 \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{~F}+\mathrm{Hg}_{2} \mathrm{Cl}_{2}$
(iii) $\mathrm{CH}_{3} \mathrm{Br}+2 \mathrm{Na}+\mathrm{CH}_{3} \mathrm{Br} \xrightarrow[\text { ether }]{\text { Dry }} \mathrm{CH}_{3}-\mathrm{CH}_{3}$
OR
(a) $\mathrm{C}_{2} \mathrm{H}_{6}+\mathrm{Cl}_{2} \xrightarrow{\text { hv }} \mathrm{CH}_{3}-\mathrm{CH}_{2} \xrightarrow{\text { Cl }} \xrightarrow[\substack{\text { dry } \\ \text { ether }}]{2 \mathrm{Na}} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$
(c) Two isomers of $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}$ are
$\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CHO}$ and $\mathrm{CH}_{3}-\mathrm{C}-\mathrm{CH}_{3}$

$\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{C}-\mathrm{CH}_{3}$

CH_{3}
2-methyl but-2-ene

