

Marking Scheme Class-XI BIOLOGY (SUBJECT CODE —865)

Q.No	Expected Answers/ Value Points	Ma ks
	SECTION – A	
1	(a) Solanaceae	1
2	(d)Primata	1
	(c) 1969	1
	(b)lichens	1
;;	(a) Echinoderms	1
5	(d)Aquatic and dioecious	1
7	(d) All the above	1
3	(d) Parenchyma	1
)	(d) All the above	1
.0	(d) All the above	1
.1	(a)Lysosomes	1
.2	(b) Heteropolymer	1
3	(b) Zyogomycetes	1
.4	(b) Peridophyte	1
5	Α	1
.6	C	1
.7	A	1
8	A	1
Section	n-B	
19	Two modes of respiration in frog are as follows: Cutaneous respiration in water 1 Pulmonary respiration on land 1 OR Vasa efferentia Fat bodies Testis Testis drenal land Urino genital duct Rectum Urinary bladder Abricia acid is colled stors hormane due to following stores conditions:	
20	Abscisic acid is called stress hormone due to following responses during stress conditions: 0.5 Promotes seed dormancy 0.5 stimulates stomata closure during water stress 0.5 increases tolerance of plants to various kinds of stresses 0.5	2
21	Vital Capacity Total Lung Capacity (i) Vital capacity is the volume of air which can be exhaled after a maximum inspiration. Total Lung Capacity is the units of air which can be exhaled after a maximum inspiration. (ii) It includes: It includes: Vital Capacity=ERV+TV+IRV It includes: Total Lung Capacity Total Lung Capacity Total Lung Capacity It includes: Total Lung Capacity Total Lung Capacity	ximum
22	 (i) Resting Potential is the potential difference across the resting membrane Action Potential is the potential difference across the membrane on generation of impulse 1 (ii) During resting potential, membrane is more permeable to K+ ions as compared to Na+ 	

[
00	During action potential, membrane is more permeable to Na+ ions as compared to K+ 1	2
23	She will categorize by observing the vascular bundles situated in following conditions:	
	(i)Scattered in monocot stem	
	Arranged in ring in dicot stem 1	
	(ii) Multicellular epidermal hairs are observed over the epidermis in monocot stem	
	Multicellular epidermal hairs are not observed over the epidermis in monocot stem OR	
	Parenchyma:-Living cells, Thinwalled with intercellular space.	2
	Collenchyma:- Thick walled living no intercellular space.	2
	Conchenyma Thick wanted fiving no intercential space.	
24	Sexual reproduction in fungi takes place in adverse environmental conditions with the help of two mating	
	thallus . 0.5	
	The different steps are:	
	Plasmogamy: It is the fusion of protoplasm 0.5	
	Karyogamy: It refers to fusion of nucleus 0.5	2
	Meiosis:	2
25	In zygote, it involves cell cycle leading to nuclear division 0.5	
25	Protonemal cell of moss: n, 0.5	
	Leaf cell of moss: n, 0.5	
	Prothallus cell of fern: n,0.5Gemma cup cell of marcantia: n,0.5	
	Gemma cup cen or marcanda. n, 0.5	2
		2
	Section- C	
26	Three main features of Arthropods are as follows:	
	(i)Exoskeleton made up of chitin1	
	(ii)Jointed legs 1	
	(iii)Compound eyes 1	
	Or any other relevant character	3
27	Inflorescence can be defined as arrangement of flowers on the flowering axis. It comprises complete flower	
	head of a plant, including stem, stalk, bract and flower. Inflorescence is group or cluster of flowers like	
	sunflower, marigold attached to a stem. 1 Racemose inflorescence:	
	a) unlimited growth of shoot apex,	
	b) acropetal arrangement of flowers	
	Cymose inflorescence:	3
	a) limited growth of shoot apex,	
	b) basipetal arrangement of flowers	
	OR	
	1+1+1	
	On the basis of insertion of pistil and other floral organs flowers can be hypogynous, perigynous and	
	epigynous.	
		1

2 3	Cytoplasm 1 a)Bacteria is prokaryotic because it 1 has no membrane bound nucleus Genetic material is scattered in cytoplasm c) Prokaryotic cell donot have membrane bound organelles like endoplasmic reticulum (ER), the Golgi complex, lysosomes, mitochondria, QR OR The names four membrane bound organelles are as given below: a) Nucleus, b) ER, c) Lysosomes, d) Vacuole	4
32	1 Oxidative Decarboxylation: Removal of carbon along with oxidation i.e formation of acetyl coenzyme A from pyruvic acid 1 2 3 NADH2and 1FADH2 3 3 and 4 carbon atoms respectively Or Two reactions in the cycle can be named as: a) Decarboxylation b) Regeneration, 2 2	4
33	Meaning of light reaction: Light reaction is light dependent synthesis of ATP and NADPH. It involves cyclic and acyclic photophosphorylation.1 Different Modes of Light reactions can be explained through following diagrams:	
	$\begin{array}{c} & \\ \hline \\$	5

	Characteristic	C3 plants	C4 plants		
	Meaning	In dark reaction of Photosynthesis process C3 plants use the C3 pathway or Calvin cycle	In dark reaction of Photosynthesis process C4 plants use the C4 pathway or Hatch-Slack Pathway		
	Name of favourable Season	Cool-season plants	Warm-season plants		
	Product	3 carbon compound (Phosphoglyceri c acid)	4 carbon compound (Oxaloacetic acid)		
	Kranz anatomy	Absent	Present		
	Optimum temperature	Extremely low.	High.		
34					
				(0.1 sec)	
			(0.	A 4 sec) B C (0.3 sec)	
	Atrial systole, Vent	Diagram of Cardia iac cycle: ists of Joint diastole tricular systole with e Total time of cardi	of atria and ventric atrial diastole	A 4 sec) (0.3 sec) 2 es 1	5
	Cardiac cycle consi Atrial systole, Vent Ventricular diastole Connective tissu	iac cycle: ists of Joint diastole tricular systole with e Total time of cardi ue is one which com	of atria and ventric atrial diastole ac cycle is 0.8 seco OR nects body systems. cells,1 white blood	A sec) B C (0.3 sec) 2 es 1 1 nds 1 Blood is one example which has an extra-cellular cells, and platelets floating in it. The details are as	5
	Cardiac cycle consi Atrial systole, Vent Ventricular diastole Connective tissu matrix called plas Plasma: 90-92 wate Formed Elements: ' leukocytes also kno Erythrocytes: With Leukocytes: Granu	iac cycle: ists of Joint diastole tricular systole with e Total time of cardi ue is one which com sma, with red blood er and protein The three classes of own as white blood out nucleus, average locytes and Agranul	of atria and ventric atrial diastole ac cycle is 0.8 seco OR nects body systems. cells,1 white blood follows 1 formed elements ar cells, and the throm e life span 120 days locyte 1	A sec) B C (0.3 sec) 2 es 1 1 nds 1 Blood is one example which has an extra-cellular cells, and platelets floating in it. The details are as	5

e) from one parent cell two daughter cells are produced			
Meiosis:			
a) Occurs in germinal cells			
b) variation in daughter cells			
c) crossing over is there			
d) long process, from one daughter cell			
e) four daughter cells are produced 1*5			
OR			
The prophase I of meiosis has following stages with respective details:			
Leptotene: This is the beginning phase of prophase-I. It is characterised by the condensation of the chromosomes.			
Zygotene: Homologous chromosomes start pairing up, known as the synapsis. The synaptonemal complex starts building			
up. Bivalent chromosomes appear.			
Pachytene: Non-sister chromatids of one homologous pair of chromosomes exchange their chromosomal parts. This			
process is known as crossing over. Chiasmata is the attachment point of the crossing-over.			
Diplotene: The crossing-over completes.			
Diakinesis: The homologous chromosomes separate. Synaptonemal complex disappears. The nuclear membrane			
disappears. 1*5			